-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsimulate.py
118 lines (95 loc) · 4.94 KB
/
simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import pickle
from pathlib import Path
from perception.vehicle import PredictorLinear
from interaction.vehicle import ModelPredictiveController, params_control_mpc, params_control_general
from interaction.vehicle import PIDController, params_control_pid
from interaction.pedestrian import SocialForceCrossing, params_SocialForceCrossing
from motion.pedestrian import PointMassNewton, PointMassNewton_params_ped as params_ped
from motion.vehicle import DynamicLongitudinal, DynamicLongitudinal_params_simple as params_veh
np.set_printoptions(precision=4, suppress=True)
# Parameters ---------------------------------------------------------------------------------------------------------
# sim info
DT = 0.1 # sec
T0 = 0.0
T_sim_total = 10.0
# road info
W_lane = 3.2 # m, from https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
X_min = -130.0
X_max = 30.0
R_MPH2mps = 2.237 # ratio converting MPH to m/s
# controller
T_prediction = 3.0 # sec, time horizon of prediction
# saving results
result_path = 'results'
Path(result_path).mkdir(parents=True, exist_ok=True)
def simulate(init_state, control_method, verbose=False):
# Initialize the Scene -------------------------------------------------------------------------------------------
# road layout
layout = {
'lane_line_solid': [np.array([[X_min, X_max], [0, 0]]),
np.array([[X_min, X_max], [W_lane * 2, W_lane * 2]])],
'lane_line_dashed': [np.array([[X_min, X_max], [W_lane, W_lane]])]
}
# pedestrian dynamics
ped = PointMassNewton(params=params_ped, initial_state=[0.0, -2.0, 0.0, 1.0], dt=DT, t0=T0)
# pedestrian interaction - motion model
params_SocialForceCrossing.update({'W_lane': W_lane})
ped_sfm = SocialForceCrossing(pedestrian=ped, params=params_SocialForceCrossing, W_road=2*W_lane, dt=DT, t0=T0)
# vehicle dynamics
params_control_general.update({'W_lane': W_lane})
params_veh.update(params_control_general)
veh_ego = DynamicLongitudinal(params=params_veh, initial_state=init_state, dt=DT, t0=T0, lat_pos=W_lane / 2, verbose=False)
# vehicle interaction - controller
if control_method == 'mpc':
# model predictive control
params_control_mpc.update(params_control_general)
params_control_mpc['N_pred'] = round(T_prediction / DT)
con_ego = ModelPredictiveController(vehicle=veh_ego, params=params_control_mpc, verbose=True)
elif control_method == 'oac':
# obstacle avoidance control
params_control_pid.update(params_control_general)
con_ego = PIDController(vehicle=veh_ego, params=params_control_pid, verbose=False)
elif control_method == 'vkc':
# velocity keeping control
params_control_pid.update(params_control_general)
con_ego = PIDController(vehicle=veh_ego, params=params_control_pid, pure_vel_keep=True, verbose=False)
else:
raise Exception('Invalid Controller Type')
# vehicle interaction - predictor
predictor = PredictorLinear(dt=DT, t0=T0)
# Simulation -----------------------------------------------------------------------------------------------------
for i in range(int(np.floor(T_sim_total / DT))):
# loop info
if verbose:
print('====================================================')
print(f'simulation running at t = %.3f' % (i * DT + T0))
# social force model
f_total, fd, fv, ped_state = ped_sfm.transition(veh=veh_ego)
if verbose:
print(f'Social Force: state = {ped_state}, '
f'f_total = {fd.reshape(2)}(fd) + {fv.reshape(2)}(fv) = {f_total.reshape(2)}.')
# pedestrian motion predictor
prediction = predictor.predict(traj_past=ped.state.reshape(1, 4), t_pred=T_prediction, radius=ped.R)
# vehicle control
u, feasible = con_ego.generate_control(ref_speed=init_state[1], obj_pred=prediction)
if verbose:
print(f'Applied u = {u:.4f}.')
# state update
ped.update(f_total)
veh_ego.update(u=u)
# if collision, write collision info, terminate the loop
if f_total[0][0] == float('Inf'):
print('--------------------> Collision!')
file_er = open(Path(result_path, 'collision_info.txt'), 'w')
file_er.write(f'collision happened at t = {i * DT + T0:.3f}.')
break
# Save Data -----------------------------------------------------------------------------------------------------
pickle_path = Path(result_path, f'sim_{control_method}_pos_{int(init_state[0]):3d}_vel_{int(init_state[1]):2d}.p')
pickle.dump((layout, ped, veh_ego, ped_sfm, predictor, con_ego), open(pickle_path, "wb"))
if __name__ == '__main__':
init_states = [-25, 8]
control_method = 'mpc' # select from 'mpc', 'oac', 'vkc'
# control_method = 'oac'
# control_method = 'vkc'
simulate(init_state=init_states, control_method=control_method, verbose=True)