comments | difficulty | edit_url |
---|---|---|
true |
简单 |
输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。
例如:
给定二叉树 [3,9,20,null,null,15,7]
,
3 / \ 9 20 / \ 15 7
返回它的最大深度 3 。
提示:
节点总数 <= 10000
注意:本题与主站 104 题相同:https://leetcode.cn/problems/maximum-depth-of-binary-tree/
我们可以用递归的方法来解决这道题。递归的终止条件是当前节点为空,此时深度为
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxDepth(self, root: TreeNode) -> int:
if root is None:
return 0
return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
if (!root) {
return 0;
}
return 1 + max(maxDepth(root->left), maxDepth(root->right));
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxDepth(root *TreeNode) int {
if root == nil {
return 0
}
l, r := maxDepth(root.Left), maxDepth(root.Right)
if l > r {
return 1 + l
}
return 1 + r
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn max_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
match root {
None => 0,
Some(node) => {
let mut node = node.borrow_mut();
let left = node.left.take();
let right = node.right.take();
1 + Self::max_depth(left).max(Self::max_depth(right))
}
}
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxDepth = function (root) {
if (!root) {
return 0;
}
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
};
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int MaxDepth(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + Math.Max(MaxDepth(root.left), MaxDepth(root.right));
}
}
/* public class TreeNode {
* public var val: Int
* public var left: TreeNode?
* public var right: TreeNode?
* public init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
class Solution {
func maxDepth(_ root: TreeNode?) -> Int {
guard let root = root else {
return 0
}
return 1 + max(maxDepth(root.left), maxDepth(root.right))
}
}