-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlbp.cpp
217 lines (203 loc) · 7.29 KB
/
lbp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <opencv2/opencv.hpp>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
using namespace cv;
using namespace std;
template <typename _Tp> static
inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) {
//get matrices
Mat src = _src.getMat();
// allocate memory for result
_dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1);
Mat dst = _dst.getMat();
// zero
dst.setTo(0);
for(int n=0; n<neighbors; n++) {
// sample points
float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));
float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));
// relative indices
int fx = static_cast<int>(floor(x));
int fy = static_cast<int>(floor(y));
int cx = static_cast<int>(ceil(x));
int cy = static_cast<int>(ceil(y));
// fractional part
float ty = y - fy;
float tx = x - fx;
// set interpolation weights
float w1 = (1 - tx) * (1 - ty);
float w2 = tx * (1 - ty);
float w3 = (1 - tx) * ty;
float w4 = tx * ty;
// iterate through your data
for(int i=radius; i < src.rows-radius;i++) {
for(int j=radius;j < src.cols-radius;j++) {
// calculate interpolated value
float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx));
// floating point precision, so check some machine-dependent epsilon
dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n;
}
}
}
}
static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)
{
int type = src.type();
switch (type) {
case CV_8SC1: elbp_<char>(src,dst, radius, neighbors); break;
case CV_8UC1: elbp_<unsigned char>(src, dst, radius, neighbors); break;
case CV_16SC1: elbp_<short>(src,dst, radius, neighbors); break;
case CV_16UC1: elbp_<unsigned short>(src,dst, radius, neighbors); break;
case CV_32SC1: elbp_<int>(src,dst, radius, neighbors); break;
case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break;
case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break;
default:
string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);
CV_Error(CV_StsNotImplemented, error_msg);
break;
}
}
static Mat
histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)
{
Mat result;
// Establish the number of bins.
int histSize = maxVal-minVal+1;
// Set the ranges.
float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) };
const float* histRange = { range };
// calc histogram
calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);
// normalize
if(normed) {
result /= (int)src.total();
}
return result.reshape(1,1);
}
static Mat histc(InputArray _src, int minVal, int maxVal, bool normed)
{
Mat src = _src.getMat();
switch (src.type()) {
case CV_8SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_8UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_16SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_16UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_32SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_32FC1:
return histc_(src, minVal, maxVal, normed);
break;
default:
CV_Error(CV_StsUnmatchedFormats, "This type is not implemented yet."); break;
}
return Mat();
}
static Mat spatial_histogram(InputArray _src, int numPatterns,
int grid_x, int grid_y, bool /*normed*/)
{
Mat src = _src.getMat();
// calculate LBP patch size
int width = src.cols/grid_x;
int height = src.rows/grid_y;
// allocate memory for the spatial histogram
Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1);
// return matrix with zeros if no data was given
if(src.empty())
return result.reshape(1,1);
// initial result_row
int resultRowIdx = 0;
// iterate through grid
for(int i = 0; i < grid_y; i++) {
for(int j = 0; j < grid_x; j++) {
Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width));
Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true);
// copy to the result matrix
Mat result_row = result.row(resultRowIdx);
cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1);
// increase row count in result matrix
resultRowIdx++;
}
}
// return result as reshaped feature vector
return result.reshape(1,1);
}
//------------------------------------------------------------------------------
// wrapper to cv::elbp (extended local binary patterns)
//------------------------------------------------------------------------------
static Mat elbp(InputArray src, int radius, int neighbors) {
Mat dst;
elbp(src, dst, radius, neighbors);
return dst;
}
class LBPextractor
{
public:
LBPextractor() = default;
//LBPextractor(string name): FileName(name) {}
LBPextractor(string name);
vector<double> getFeature();
private:
string FileName;
vector<vector<int> > RandN;
vector<vector<int> > xAndy;
};
LBPextractor::LBPextractor(string name)
{
FileName = name;
RandN.push_back({2,8});
RandN.push_back({3, 16});
RandN.push_back({4, 16});
xAndy.push_back({5, 5});
xAndy.push_back({4, 4});
xAndy.push_back({3, 3});
xAndy.push_back({2, 2});
}
vector<double> LBPextractor::getFeature()
{
vector<double> f;
Mat m_refFaceImg = imread(FileName, 0);
for(int i = 0; i < RandN.size(); i++)
{
int radius = RandN[i][0];
int neighbor = RandN[i][1];
Mat lbp_image = elbp(m_refFaceImg, radius, neighbor);
for(int j = 0; j < xAndy.size(); j++)
{
int m_grid_x = xAndy[j][0];
int m_grid_y = xAndy[j][1];
int m_numPatterns = neighbor * (neighbor - 1) + 3;
Mat query = spatial_histogram(
lbp_image, /* lbp_image */
m_numPatterns, /* number of possible patterns可为static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors)))*/
m_grid_x, /* grid size x */
m_grid_y, /* grid size y */
true /* normed histograms */
);
vector<double> vec;
query.row(0).copyTo(vec);
f.insert(f.end(), vec.begin(), vec.end());
}
}
return f;
}
/*
int main()
{
string name = "a.jpg";
LBPextractor A(name);
vector<double> res = A.getFeature();
cout<<res.size()<<endl;
}*/