-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvoltmeter_example.py
86 lines (69 loc) · 2.06 KB
/
voltmeter_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
'''
Created on Mar 16, 2013
@author: Doug Szumski
A re-implementation of the code by Andrew D. Straw:
http://www.scipy.org/Cookbook/KalmanFiltering
Which is an implementation of the example in:
"An introduction to the Kalman Filter", Greg Welch and Gary Bishop
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
A noisy volt meter measuring a voltage of -0.37727V
A moving average is included for comparison
'''
from numpy import matrix, random
from helper_utils import MovingAverage
from helper_utils import Logger
from helper_utils import KalmanPlotter
from kalman_filter import KalmanFilter
# Time step size
dt = 1.0
# Standard deviation of observations
sigma_z = 0.1
# Initial state [voltage level]
X = matrix([0.0])
# Initial state covariance
P = matrix([1.0])
# State transition model
F = matrix([1])
# Initial observation
Z = matrix([0.0])
# Observation model
H = matrix([1])
# Observation covariance
R = matrix([sigma_z ** 2])
# Process noise covariance matrix
Q = matrix([1e-5])
# Initialise the filter
kf = KalmanFilter(X, P, F, Q, Z, H, R)
# Set the actual position
A = matrix([-0.37727])
# Create log for generating plots
log = Logger()
log.new_log('measurement')
log.new_log('estimate')
log.new_log('actual')
log.new_log('time')
log.new_log('covariance')
log.new_log('moving average')
# Moving average for measurements
moving_avg = MovingAverage(15)
# Number of iterations to perform
iterations = 50
for i in range(0, iterations):
# Predict
(X, P) = kf.predict(X, P)
# Update
(X, P) = kf.update(X, P, Z)
# Synthesise a new noisy measurement centered around the actual position
Z = matrix([random.normal(A[0, 0], sigma_z)])
# Update the moving average with the latest measured position
moving_avg.update(Z[0, 0])
# Update the log for plotting later
log.log('measurement', Z[0, 0])
log.log('estimate', X[0, 0])
log.log('actual', A[0, 0])
log.log('time', i * dt)
log.log('covariance', P[0, 0])
log.log('moving average', moving_avg.getAvg())
# Plot the system behaviour
plotter = KalmanPlotter()
plotter.plot_kalman_data(log)