-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFA_SIMECK64.c
516 lines (438 loc) · 17.9 KB
/
FA_SIMECK64.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "time.h"
#include "simeck.h"
void printbinary(uint32_t x);
int matchPattern(uint32_t data);
uint8_t getFaultPosition(uint32_t delta);
int satisfatory(uint8_t array[]);
int satisfatoryMaster(uint8_t *array);
int rightPosition(int pos);
void delay(int number_of_seconds);
void getK1(uint32_t cipher[2], uint32_t constant, uint64_t seq, uint32_t keys[4]);
void getMasterkey(uint32_t cipher[2], uint32_t constant, uint64_t seq, uint32_t keys[4]);
const int NUM_ROUNDS = 44;
const int8_t WORD_SIZE = 32;
int main(void) {
/* Plaintext and Key used to encrypt */
uint32_t text[] = {
0x20646e75,
0x656b696c,
};
const uint32_t key[] = {
0x03020100,
0x0b0a0908,
0x13121110,
0x1b1a1918,
};
/* Assign values for a cipher computed */
uint32_t constant = 0xFFFFFFFC;
uint64_t sequence = 0x938BCA3083F;
const uint32_t *master_key = key;
const uint32_t *plaintext = text;
int idx;
uint32_t ciphertext[2];
uint32_t keys[4] = {
master_key[0],
master_key[1],
master_key[2],
master_key[3],
};
ciphertext[0] = plaintext[0];
ciphertext[1] = plaintext[1];
uint32_t temp;
for (idx = 0; idx < NUM_ROUNDS - 5; idx++) {
ROUND64(
keys[0],
ciphertext[1],
ciphertext[0],
temp
);
constant &= 0xFFFFFFFC;
constant |= sequence & 1;
sequence >>= 1;
ROUND64(
constant,
keys[1],
keys[0],
temp
);
// rotate the LFSR of keys
temp = keys[1];
keys[1] = keys[2];
keys[2] = keys[3];
keys[3] = temp;
}
srand(time(NULL));
getK1(ciphertext, constant, sequence, keys);
getMasterkey(ciphertext, constant, sequence, keys);
}
void getMasterkey(uint32_t cipher[2], uint32_t constant, uint64_t seq, uint32_t keys[4]) {
uint32_t correctcipher[2]; // for encryption correct text
uint32_t faultycipher[2]; // for encryption faulty text
uint8_t stateKeys[4][WORD_SIZE]; // Record if a key bit recovered from K(T - 1) to K(T - 4): 1 - recovered, 0 - not recovered
uint8_t stateDelta[2][WORD_SIZE]; // Indicate if bits of Delta(T - 3), Delta(T - 4) are known: 1 - known, 0 - unknown
uint32_t tempkeys[4];
uint32_t correcttext[6]; //uint16_t correcttext[6][2]; // imm
uint32_t faultytext[6]; //uint16_t faultytext[6][2];
uint32_t delta[6]; //uint16_t delta[6][2];
uint32_t temp;
int temppos;
int8_t pos; // Position where a fault is injected
int8_t faultpos; // Deduce from pattern recognization
int n_faults = 0; // Number of faults to fully recover K(T - 1)
int sum_faults = 0; // Total number of faults after 10000 times
int i, j, idx;
for (idx = 0; idx < 10000; idx++)
{
n_faults = 0; // Initialize the number of bits injected
/* Initialize the state array, indicating that all bits not yet recovered */
for (i = 0; i < 4; i++)
for (j = 0; j < WORD_SIZE; j++)
stateKeys[i][j] = 0;
while (!satisfatoryMaster((uint8_t *)stateKeys))
{
n_faults +=1;
/* Initialize the array of Delta(T - 3), indicating that all bits not yet known */
for (i = 0; i < 2; i++)
for (j = 0; j < WORD_SIZE; j++)
stateDelta[i][j] = 0;
for (i = 0; i < 4; i++)
tempkeys[i] = keys[i];
// Inject a fault into the input at the round T - 5
pos = rand() % WORD_SIZE;
// correcttext and faultytext will be used to compute input differences from round T - 5 to T
correcttext[0] = cipher[1];
faultytext[0] = FLIPBIT(cipher[1], pos); //faultytext[0][0] = ciphertext[0];
// Set immediate correct and faulty ciphertext as ones at round T - 5
correctcipher[0] = cipher[0];
correctcipher[1] = cipher[1];
faultycipher[0] = cipher[0];
faultycipher[1] = faultytext[0]; //printf("Faulty ciphertext at the roun 27 is: %04x %04x\n", faultycipher[1], faultycipher[0]);
// Initialize input differences
delta[0] = faultytext[0] ^ correcttext[0]; // delta[0][0] = faultytext[0][0] ^ correcttext[0][0]; //printf("fault at: %d\n", pos); printbinary(delta[0]); printf("\n");
for (i = 0; i < 5; i++) {
ROUND64(
tempkeys[0],
correctcipher[1],
correctcipher[0],
temp
);
// Faulty encryption
ROUND64(
tempkeys[0],
faultycipher[1],
faultycipher[0],
temp
);
constant &= 0xFFFFFFFC;
constant |= seq & 1;
seq >>= 1;
ROUND64(
constant,
tempkeys[1],
tempkeys[0],
temp
);
// rotate the LFSR of keys
temp = tempkeys[1];
tempkeys[1] = tempkeys[2];
tempkeys[2] = tempkeys[3];
tempkeys[3] = temp;
correcttext[i + 1] = correctcipher[1]; //correcttext[idx + 1] = correctcipher[0];
faultytext[i + 1] = faultycipher[1]; // faultytext[idx + 1][0] = faulty[0];
delta[i + 1] = faultytext[i + 1] ^ correcttext[i + 1]; //delta[idx + 1][0] = faultytext[idx + 1][0] ^ correcttext[idx + 1][0];
}
/* Get the fault position by matching pattern of delta T - 2 */
faultpos = getFaultPosition(delta[3]);
/* Determine known bits of Delta(T - 3) and Delta(T - 4) from the fault position recovered */
for (j = 2; j < 5; j++){
stateDelta[0][rightPosition(faultpos + j)] = 1; // stateDelta[0] is Delta(T - 3)
stateDelta[1][rightPosition(faultpos + j)] = 1; // stateDelta[1] is Delta(T - 4)
}
stateDelta[1][rightPosition(faultpos + 1)] = 1;
for (j = 7; j < 10; j++){
stateDelta[0][rightPosition(faultpos + j)] = 1;
stateDelta[1][rightPosition(faultpos + j)] = 1;
}
stateDelta[1][rightPosition(faultpos + 6)] = 1; // stateDelta[1] is Delta(T - 4)
for (j = 11; j < WORD_SIZE; j++){
stateDelta[0][rightPosition(faultpos + j)] = 1;
stateDelta[1][rightPosition(faultpos + j)] = 1; // stateDelta[1] is Delta(T - 4)
}
stateDelta[1][rightPosition(faultpos + 10)] = 1;
// Recover key bits from linear expressions, Step 4.1
stateKeys[0][rightPosition(faultpos - 2)] = 1; // stateKeys[0] means K(T - 1)
stateKeys[0][rightPosition(faultpos + 8)] = 1;
stateKeys[1][rightPosition(faultpos - 3)] = 1; // stateKeys[0] means K(T - 2)
stateKeys[1][rightPosition(faultpos + 7)] = 1;
stateKeys[2][rightPosition(faultpos - 4)] = 1; // stateKeys[0] means K(T - 3)
stateKeys[2][rightPosition(faultpos + 6)] = 1;
stateKeys[3][rightPosition(faultpos - 5)] = 1; // stateKeys[0] means K(T - 4)
stateKeys[3][rightPosition(faultpos + 5)] = 1;
// Recover bits from Step 4.2
for (i = 0; i < WORD_SIZE; i++)
{
// Recover K(T - 1)
if (GETBIT(delta[3], i) == 1){ // Delta(T - 2)
if ((GETBIT(delta[3], rightPosition(i - 5)) == 0) && (stateDelta[0][i] == 1))
stateKeys[0][rightPosition(i - 5)] = 1;
}
if (GETBIT(delta[3], i) == 1){
if ((GETBIT(delta[3], rightPosition(i + 5)) == 0) && (stateDelta[0][rightPosition(i + 5)] == 1))
stateKeys[0][rightPosition(i + 5)] = 1;
}
// Recover K(T - 2)
if (GETBIT(delta[2], i) == 1){ // Delta(T - 3)
if ((GETBIT(delta[2], rightPosition(i - 5)) == 0) && (stateDelta[1][i] == 1))
stateKeys[1][rightPosition(i - 5)] = 1;
}
if (GETBIT(delta[2], i) == 1){
if ((GETBIT(delta[2], rightPosition(i + 5)) == 0) && (stateDelta[1][rightPosition(i + 5)] == 1))
stateKeys[0][rightPosition(i + 5)] = 1;
}
// Recover K(T - 3)
if ((GETBIT(delta[1], i) == 1) && (GETBIT(delta[1], rightPosition(i - 5)) == 0)) // Delta(T - 4)
stateKeys[2][rightPosition(i - 5)] = 1;
if ((GETBIT(delta[2], i) == 1) && (GETBIT(delta[2], rightPosition(i + 5)) == 0))
stateKeys[0][rightPosition(i + 5)] = 1;
}
}
//printf("No of faults to recover master key: %d \n", n_faults);
sum_faults += n_faults; //printf("Sum fauts is: %d\n", sum_faults);
}
printf("Simeck64/128 %04x %04x\n", correctcipher[1], correctcipher[0]);
printf("Average number of faults injected to recover the full master key: %f\n", (double)sum_faults/10000);
}
/***
* Get the last round key
*/
void getK1(uint32_t cipher[2], uint32_t constant, uint64_t seq, uint32_t keys[4]) {
uint8_t state[WORD_SIZE]; // Record if a bit recovered: 1 - recovered, 0 - not recovered
uint8_t deltaT3[WORD_SIZE]; // Indicate if bits of Delta(T - 3) are known: 1 - known, 0 - unknown
uint8_t stateFault[WORD_SIZE];
uint32_t correctcipher[2]; // for encryption correct text
uint32_t faultycipher[2]; // for encryption faulty text
uint32_t correcttext[6]; // Correct left inputs from fault
uint32_t faultytext[6]; // Faulty left inputs from fault
uint32_t delta[6]; // Input differences from fault
uint32_t tempkeys[4];
uint32_t temp;
int temppos;
int8_t pos; // Position where a fault is injected
int8_t faultpos; // Deduce from pattern recognization
int n_faults = 0; // Number of faults to fully recover K(T - 1)
int sum_faults = 0; // Total number of faults after 10000 times
int idx;
int i, j;
for (i = 0; i < 10000; i++)
{
n_faults = 0; // Initialize the number of bits injected
/* Initialize the state array, indicating that all bits not yet recovered */
for (idx = 0; idx < WORD_SIZE; idx++){
state[idx] = 0;
stateFault[idx] = 0;
}
while (!satisfatory(state)) //&& (n_faults) < 100)
{
n_faults +=1;
/* Initialize the array of Delta(T - 3), indicating that all bits not yet known */
for (j = 0; j < WORD_SIZE; j++)
deltaT3[j] = 0;
for (idx = 0; idx < 4; idx++)
tempkeys[idx] = keys[idx];
// Inject a fault into the input at the round T - 5
pos = rand() % WORD_SIZE; // pos = 1;
// correcttext and faultytext will be used to compute input differences from round T - 5 to T
correcttext[0] = cipher[1];
faultytext[0] = FLIPBIT(cipher[1], pos);
// Set immediate correct and faulty ciphertext as ones at round T - 5
correctcipher[0] = cipher[0];
correctcipher[1] = cipher[1];
faultycipher[0] = cipher[0];
faultycipher[1] = faultytext[0];
// Initialize input differences
delta[0] = faultytext[0] ^ correcttext[0];
//printf("Delta(T - 5) of fault position %d: ", pos); printbinary(delta[0]); printf("\n");
for (idx = 0; idx < 5; idx++) {
ROUND64(
tempkeys[0],
correctcipher[1],
correctcipher[0],
temp
);
// Faulty encryption
ROUND64(
tempkeys[0],
faultycipher[1],
faultycipher[0],
temp
);
constant &= 0xFFFFFFFC;
constant |= seq & 1;
seq >>= 1;
ROUND64(
constant,
tempkeys[1],
tempkeys[0],
temp
);
// rotate the LFSR of keys
temp = tempkeys[1];
tempkeys[1] = tempkeys[2];
tempkeys[2] = tempkeys[3];
tempkeys[3] = temp;
correcttext[idx + 1] = correctcipher[1];
faultytext[idx + 1] = faultycipher[1];
delta[idx + 1] = faultytext[idx + 1] ^ correcttext[idx + 1];
}
/* Get the fault position by matching pattern of delta T - 2 */
faultpos = getFaultPosition(delta[3]);
stateFault[faultpos] = 1;
//printf("Delta(T - 2) at the fault %d: ", faultpos); printbinary(delta[3]); printf("\n");
/* Determine known bits of Delta(T - 3) from the fault position recovered */
for (j = 2; j < 5; j++)
deltaT3[rightPosition(faultpos + j)] = 1;
for (j = 7; j < 10; j++)
deltaT3[rightPosition(faultpos + j)] = 1;
for (j = 11; j < WORD_SIZE; j++)
deltaT3[rightPosition(faultpos + j)] = 1;
// Recover bits from linear expressions, Step 4.1
state[rightPosition(faultpos - 2)] = 1;
state[rightPosition(faultpos + 8)] = 1;
// Recover bits from Step 4.2
for (idx = 0; idx < WORD_SIZE; idx++)
{
if (GETBIT(delta[3], idx) == 1){
if ((GETBIT(delta[3], rightPosition(idx - 5)) == 0) && (deltaT3[idx] == 1))
state[rightPosition(idx - 5)] = 1;
}
if (GETBIT(delta[3], idx) == 1){
if ((GETBIT(delta[3], rightPosition(idx + 5)) == 0) && (deltaT3[rightPosition(idx + 5)] == 1))
state[rightPosition(idx + 5)] = 1;
}
}
}
//printf("No of faults to recover K1: %d \n", n_faults);
sum_faults += n_faults;
}
printf("Simeck64/128 %04x %04x\n", correctcipher[1], correctcipher[0]);
printf("Average number of faults injected to recover K(T - 1): %f\n", (double)sum_faults/10000);
}
/**
* Make a delay for number_of_seconds seconds
*/
void delay(int number_of_seconds)
{
// Converting time into clock cycles
int clock_cycles = CLOCKS_PER_SEC * number_of_seconds;
clock_t start_time = clock();
while (clock() < start_time + clock_cycles)
;
}
/**
* Return the right position of bit
*/
int rightPosition(int pos) {
if (pos < 0){
return 32 + pos;
}
else {
if (pos > 31)
{
return pos - 32;
}
else
{
return pos;
}
}
}
/***
* Check if all elements of array are 1
*/
int satisfatory(uint8_t array[]) {
for (size_t i = 0; i < WORD_SIZE; i++)
{
if (array[i] == 0)
{
return 0;
}
}
return 1;
}
int satisfatoryMaster(uint8_t *array) {
for (size_t i = 0; i < 4; i++)
{
for (size_t j = 0; j < WORD_SIZE; j++)
{
if (*((array + i*WORD_SIZE) + j) == 0)
return 0;
}
}
return 1;
}
/***
* Print an uint16_t in binary representation
*/
void printbinary(uint32_t x) {
for (int i = 0; i < 32; i++)
printf("%d", GETBIT(x, i));
}
/***
* Find the pattern "10***00**000" in the input differential Delta(T - 2)
*
* Input: Input differences at the round T - 2
* Output: Yes or No
*/
int matchPattern(uint32_t data) {
int idx;
data = data >> 1;
if (data % 2 != 0)
return 0;
data = data >> 4;
for(idx = 0; idx < 2; idx++) {
if (data % 2 != 0)
return 0;
data = data >> 1;
}
data = data >> 2;
for(idx = 0; idx < 3; idx++) {
if (data % 2 != 0)
return 0;
data = data >> 1;
}
data = data >> 1;
for(idx = 0; idx < 16; idx++) {
if (data % 2 != 0)
return 0;
data = data >> 1;
}
return 1;
}
/***
* Find the fault position at the round T - 5
*
* Input: Given the input differences of the round T - 2
* Output: the fault position at the round T - 5
*/
uint8_t getFaultPosition(uint32_t delta) {
uint8_t ret = 0;
uint32_t temp = delta;
while(ret < 32) {
// Find the first "1" in the input differences
while ((temp % 2 == 0) && (ret < 32)) {
ret++;
temp = RROT32((temp), 1);
}
// Compare to the pattern
if (matchPattern(temp) == 1)
return (ret - 3 >= 0? (ret - 3): 29 + ret);
else {
ret++;
temp = RROT32(temp, 1);
}
}
return ret;
}