-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_8schools_bdry_avoid.R
93 lines (72 loc) · 2.89 KB
/
run_8schools_bdry_avoid.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
setwd("~/Documents/boundary_avoiding_priors/")
library(rstan)
library(xtable)
options(mc.cores=parallel::detectCores())
y <- c(28, 8, -3, 7, -1, 1, 18, 12)
sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
standata <- list(y =y, sigma = sigma,J=length(y))
mod <- stan_model("schools_ln.stan")
means <- c(0,0.5,1,1.5,2,2.5,3,4,5,6,7,8,9,10)
standata$tau_sigma <- 1.0
curve(dlnorm(x,10,1),from = 0, to=5,log="y",ylim = c(1e-36,1))
for (mean in means){
curve(dlnorm(x,mean, 1), add=TRUE,log="y")
}
output= list()
for (mean in means){
standata$tau_mu <- mean
fit <- sampling(mod, data = standata, control= list(adapt_delta=0.8),refresh=0)
divs = sum(rstan:::sampler_param_vector(fit,"divergent__"))
energies_by_chain <- rstan:::sampler_param_matrix(fit, "energy__")
EBFMIs <- apply(energies_by_chain, 2, function(x) {
numer <- sum(diff(x)^2)/length(x)
denom <- var(x)
numer/denom
})
low_BFMI <- any(EBFMIs < 0.2)
tmp = list(mu = mean, prior_median= exp(mean), one_pc = qlnorm(p=0.01,meanlog = mean, sdlog=1),
divergences = divs, low_BFMI=low_BFMI, tau_low =summary(fit)$summary["tau",4],
tau_med =summary(fit)$summary["tau",6],
tau_up = summary(fit)$summary["tau",8]
)
output = rbind(output,tmp)
}
rownames(output) <- c()
xx= xtable(output,display = c("d","f","f","f","d","s","f","f","f"))
xx
print(xx,type = "html",include.rownames = FALSE)
mod2 = stan_model("eight_schools_ncp.stan")
y <- c(28, 8, -3, 7, -1, 1, 18, 12)
sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
standata2 <- list(y =y, sigma = sigma,J=length(y))
fit2=sampling(mod2, data = standata2, control= list(adapt_delta=0.9999999),refresh=0)
## Inverse gamma
y <- c(28, 8, -3, 7, -1, 1, 18, 12)
sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
standata <- list(y =y, sigma = sigma,J=length(y))
mod <- stan_model("schools_ig.stan")
standata$tau_shape <- 2
rates <- rev(c(100,50,40,30,20,10,5,2,1,0.5))
output= list()
for (rate in rates){
standata$tau_rate <- rate
fit <- sampling(mod, data = standata, control= list(adapt_delta=0.8),refresh=0)
divs = sum(rstan:::sampler_param_vector(fit,"divergent__"))
energies_by_chain <- rstan:::sampler_param_matrix(fit, "energy__")
EBFMIs <- apply(energies_by_chain, 2, function(x) {
numer <- sum(diff(x)^2)/length(x)
denom <- var(x)
numer/denom
})
low_BFMI <- any(EBFMIs < 0.2)
tmp = list(beta = rate, prior_mean = rate, one_pc = 1/qgamma(p=0.991,shape=2,rate=rate),
divergences = divs, low_BFMI=low_BFMI, tau_low =summary(fit)$summary["tau",4],
tau_med =summary(fit)$summary["tau",6],
tau_up = summary(fit)$summary["tau",8]
)
output = rbind(output,tmp)
}
rownames(output) <- c()
xx= xtable(output,display = c("d","f","f","f","d","s","f","f","f"))
xx
print(xx,type = "html",include.rownames = FALSE)