-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
53 lines (43 loc) · 1.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_palette('Set2')
N = 400
P = 100
N_sqrt = np.sqrt(N).astype('int32')
NO_OF_ITERATIONS = 40
NO_OF_BITS_TO_CHANGE = 200
epsilon = np.asarray([np.random.choice([1, -1], size=N)])
for i in range(P-1):
epsilon = np.append(epsilon, [np.random.choice([1, -1], size=N)], axis=0)
print(epsilon.shape)
random_pattern = np.random.randint(P)
test_array = epsilon[random_pattern]
random_pattern_test = np.random.choice([1, -1], size=NO_OF_BITS_TO_CHANGE)
test_array[:NO_OF_BITS_TO_CHANGE] = random_pattern_test
print(random_pattern)
w = np.zeros((N, N))
h = np.zeros(N)
for i in range(N):
for j in range(N):
for p in range(P):
w[i, j] += (epsilon[p, i]*epsilon[p, j]).sum()
if i==j:
w[i, j] = 0
w /= N
hamming_distance = np.zeros((NO_OF_ITERATIONS, P))
for iteration in range(NO_OF_ITERATIONS):
for _ in range(N):
i = np.random.randint(N)
h[i] = 0
for j in range(N):
h[i] += w[i, j]*test_array[j]
test_array = np.where(h<0, -1, 1)
for i in range(P):
hamming_distance[iteration, i] = ((epsilon - test_array)[i]!=0).sum()
fig = plt.figure(figsize = (8, 8))
plt.plot(hamming_distance)
plt.xlabel('No of Iterations')
plt.ylabel('Hamming Distance')
plt.ylim([0, N])
plt.show()