The required environment for installation and tests is the Anaconda Python3 distribution
If you encounter an Image not found
error on Mac OSX, you may need an
XQuartz upgrade.
Start by cloning this repository:
git clone https://github.com/data-8/datascience
Install the dependencies into a Conda environment with:
conda env create -f osx_environment.yml -n datascience
# For Linux, use
conda env create -f linux_environment.yml -n datascience
Source the environment to use the correct packages while developing:
source activate datascience
# `source deactivate` will unload the environment
The above command must be run each time you develop in the package. You can also install direnv to auto-load/unload the environment.
Install datascience
locally with:
make install
Then, run the tests:
make test
Alternatively you can use tox. Its used for testing the package against different python versions in one go. Just make sure you have the python versions available globally or in your virtual environment
Install tox
pip install tox
Run tests
$ tox
After that, go ahead and start hacking!
The source activate datascience
command must be run each time you develop in
the package. Alternatively, you can install direnv to auto-load/unload
the environment.
Documentation is generated from the docstrings in the methods and is pushed online at http://data8.org/datascience/ automatically. If you want to preview the docs locally, use these commands:
make docs # Generates docs inside doc/ folder
make serve_docs # Starts a local server to view docs
We use Zenhub to organize development on this library. To get started, go ahead and install the Zenhub Chrome Extension.
Then navigate to the issue board or press b
. You'll see a screen
that looks something like this:
- New Issues are issues that are just created and haven't been prioritized.
- Backlogged issues are issues that are not high priority, like nice-to-have features.
- To Do issues are high priority and should get done ASAP, such as breaking bugs or functionality that we need to lecture on soon.
- Once someone has been assigned to an issue, that issue should be moved into the In Progress column.
- When the task is complete, we close the related issue.
- John creates an issue called "Everything is breaking". It goes into the New Issues pipeline at first.
- This issue is important, so John immediately moves it into the To Do pipeline. Since he has to go lecture for 61A, he doesn't assign it to himself right away.
- Sam sees the issue, assigns himself to it, and moves it into the In Progress pipeline.
- After everything is fixed, Sam closes the issue.
Here's another example.
- Ani creates an issue asking for beautiful histograms. Like before, it goes into the New Issues pipeline.
- John decides that the issue is not as high priority right now because other things are breaking, so he moves it into the Backlog pipeline.
- When he has some more time, John assigns himself the issue and moves it into the In Progress pipeline.
- Once the issue is finished, he closes the issue.
python setup.py sdist
twine upload dist/*