-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenhanced_ecosystem_with_psi_and_frequency.py
33 lines (27 loc) · 1.65 KB
/
enhanced_ecosystem_with_psi_and_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
class EnhancedHumanQuantumEcosystem:
def __init__(self, num_groups=5, interaction_strength=0.1, base_frequency=20):
self.num_groups = num_groups
self.growth_rates = np.random.uniform(0.01, 0.05, num_groups)
self.carrying_capacities = np.random.uniform(0.5, 1.0, num_groups)
self.innovation_rates = np.random.uniform(0.001, 0.01, num_groups)
self.adaptation_rates = np.random.uniform(0.01, 0.05, num_groups)
self.interaction_strength = interaction_strength
# Psi and frequency-related parameters
self.base_frequency = base_frequency # Hz, super low frequency
self.psi = np.random.uniform(0, 2*np.pi, num_groups) # Random initial phase for each group
self.golden_ratio = (1 + np.sqrt(5)) / 2
def update(self, state, t):
# Existing dynamics
growth = self.growth_rates * state * (1 - state / self.carrying_capacities)
innovation = self.innovation_rates * state
adaptation = self.adaptation_rates * (1 - state)
# New dynamics incorporating Psi and frequency
frequency = self.base_frequency * (1 + np.sin(t / self.golden_ratio)) # Time-varying frequency
psi_effect = np.sin(self.psi + 2 * np.pi * frequency * t) # Time-dependent phase
balancer_effect = self.interaction_strength * (psi_effect - np.mean(psi_effect))
# Update Psi based on the state of the system
self.psi += 0.1 * np.tanh(state) # State-dependent phase adjustment
# Combine all effects
total_effect = growth + innovation + adaptation + balancer_effect
return total_effect