-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataUtil.py
101 lines (77 loc) · 2.98 KB
/
DataUtil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from torch.utils.data import Dataset, DataLoader
from mol_featurizer import mol_features
from word2vec import seq_to_kmers, get_protein_embedding
import pandas as pd
from gensim.models import Word2Vec
class DTADataset(Dataset):
""" transformerCPI dataset. """
def __init__(self, csv_file, smiles_map_file, protein_map_file, model):
self.model = model # Word2Vex model
self.datalist = pd.read_csv(csv_file, sep=" ", header=None, index_col=None,
names=['smiles', 'protein_seq', 'pIC50'])
self.smiles_map = pd.read_pickle(smiles_map_file).set_index('smiles').to_dict('index')
self.protein_map = pd.read_pickle(protein_map_file).set_index('protein_seq').to_dict('index')
def __len__(self):
return self.datalist.index.size
def __getitem__(self, idx):
data_ref = self.datalist.loc[idx]
atom = self.smiles_map[data_ref['smiles']]['atom_feature']
adj = self.smiles_map[data_ref['smiles']]['adj']
protein = self.protein_map[data_ref['protein_seq']]['protein_embedding']
label = data_ref['pIC50']
return torch.from_numpy(atom), torch.from_numpy(adj), torch.from_numpy(protein), label
def pack(atoms, adjs, proteins, labels):
atoms_len = 0
proteins_len = 0
N = len(atoms)
atom_num = torch.zeros((N, 1))
i = 0
for atom in atoms:
atom_num[i] = atom.shape[0]
i += 1
if atom.shape[0] >= atoms_len:
atoms_len = atom.shape[0]
protein_num = torch.zeros((N, 1))
i = 0
for protein in proteins:
protein_num[i] = protein.shape[0]
i += 1
if protein.shape[0] >= proteins_len:
proteins_len = protein.shape[0]
atoms_new = torch.zeros((N, atoms_len, 34))
i = 0
for atom in atoms:
a_len = atom.shape[0]
atoms_new[i, :a_len, :] = atom
i += 1
adjs_new = torch.zeros((N, atoms_len, atoms_len))
i = 0
for adj in adjs:
a_len = adj.shape[0]
adj = adj + torch.eye(a_len)
adjs_new[i, :a_len, :a_len] = adj
i += 1
proteins_new = torch.zeros((N, proteins_len, 100))
i = 0
for protein in proteins:
a_len = protein.shape[0]
proteins_new[i, :a_len, :] = protein
i += 1
labels_new = torch.zeros(N)
i = 0
for label in labels:
labels_new[i] = label
i += 1
return atoms_new, adjs_new, proteins_new, labels_new, atom_num, protein_num
def collate_fn(batch):
"""
Args batch: list of data, each atom, adj, protein, label = data
"""
atoms, adjs, proteins, labels = zip(*batch)
return pack(atoms, adjs, proteins, labels)
if __name__ == "__main__":
model = Word2Vec.load("word2vec_30.model")
dta_ds = DTADataset("data/input/sample_input.csv", "data/output/smiles_map.pkl",
"data/output/protein_map.pkl", model)
dataloader = DataLoader(dta_ds, batch_size=16, shuffle=True, num_workers=4, collate_fn=collate_fn)