-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
187 lines (157 loc) · 6.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
"""
@Time:Created on 2019/9/25 10:03
@author: LiFan Chen
@Filename: main.py
@Software: PyCharm
"""
import torch
import torch.nn as nn
from torch.cuda.amp import GradScaler
from torch.utils.data import Subset, random_split
from DataUtil import *
from model import *
import numpy as np
from sklearn.model_selection import KFold
from datetime import date
import timeit
import random
import os
if __name__ == "__main__":
# SEED = 1
# random.seed(SEED)
# torch.manual_seed(SEED)
"""CPU or GPU"""
if torch.cuda.is_available():
device = torch.device('cuda:0')
print('The code uses GPU...', flush=True)
# Creates a GradScaler once at the beginning of training.
scaler = GradScaler()
# scaler = None
else:
device = torch.device('cpu')
scaler = None
print('The code uses CPU!!!', flush=True)
"""Load preprocessed data."""
word2vec_model = Word2Vec.load("word2vec_30.model")
dta_ds = DTADataset("data/input/converted_all_data_drop_RCX_PDB_le_2500.csv", "data/output/smiles_map_2500.pkl",
"data/output/protein_map_2500.pkl", word2vec_model)
# dta_ds = DTADataset("data/input/converted_all_data_drop_RCX_PDB_10000.csv", "data/output/smiles_map.pkl",
# "data/output/protein_map.pkl", word2vec_model)
""" create model ,trainer and tester """
protein_dim = 100
atom_dim = 34
hid_dim = 64
n_layers = 12
n_heads = 8
pf_dim = 256
dropout = 0.1
batch = 16
lr = 1e-4
weight_decay = 1e-4
iteration = 300
kernel_size = 9
num_workers = 16
""" model pipeline """
encoder = Encoder(protein_dim, hid_dim, n_layers, kernel_size, dropout)
decoder = Decoder(atom_dim, hid_dim, n_layers, n_heads, pf_dim, DecoderLayer, SelfAttention,
PositionwiseFeedforward, dropout)
model = Predictor(encoder, decoder)
model.to(device)
model = nn.DataParallel(model)
# model.load_state_dict("output/2020-09-29/metric=rmse.state_dict")
trainer = Trainer(model, lr, weight_decay, scaler)
tester = Tester(model)
"""Output files."""
param_setting = "protein_dim={},atom_dim={},hid_dim={},n_layers={},n_heads={},pf_dim={},dropout={},batch={},lr={},weight_decay={},iteration={},kernel_size={}".format(
protein_dim, atom_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, batch, lr, weight_decay, iteration,
kernel_size)
output_path = "output/" + str(date.today()) + "/"
os.makedirs(output_path, exist_ok=True)
file_AUCs = output_path + param_setting + '.out'
file_model_rmse = output_path + "metric={}".format('rmse')
file_model_pear = output_path + "metric={}".format('pearson')
file_model_spear = output_path + "metric={}".format('spearman')
file_model_f1 = output_path + "metric={}".format('f1')
file_model_auc = output_path + "metric={}".format('auc')
file_model_r_square = output_path + "metric={}".format('r_square')
file_model_R2 = output_path + "metric={}".format('R2')
AUC = ('Epoch\tTime(sec)\tloss_train\trmse\tpearson\tspearman\tf1\tauc\tr_square\tR2')
with open(file_AUCs, 'w') as f:
f.write(AUC + '\n')
""" set printing precision options """
np.set_printoptions(precision=2)
"""Start training."""
print('Training...', flush=True)
print(AUC, flush=True)
start = timeit.default_timer()
scheduler = torch.optim.lr_scheduler.StepLR(trainer.optimizer, step_size=15, gamma=0.7)
min_rmse = 10 ** 10
max_pear = 0
max_spear = 0
max_f1 = 0
max_auc = 0
min_r_square = 10 ** 10
max_R2 = 0
""" K fold split dataset """
kf = KFold(n_splits=5, shuffle=False)
for epoch in range(iteration):
rmse_list = []
pear_list = []
spear_list = []
f1_list = []
auc_list = []
r_square_list = []
R2_list = []
for train_index, test_index in kf.split(range(len(dta_ds))):
""" train test dataloader """
train_dataset, test_dataset = Subset(dta_ds, train_index), Subset(dta_ds, test_index)
train_dl = DataLoader(train_dataset, batch_size=batch, shuffle=True, num_workers=num_workers,
collate_fn=collate_fn)
test_dl = DataLoader(test_dataset, batch_size=batch, shuffle=True, num_workers=num_workers,
collate_fn=collate_fn)
loss_train = trainer.train(train_dl, device=device)
rmse, pear, spear, f1, auc, r_square, R2 = tester.test(test_dl, device=device, plot=True)
end = timeit.default_timer()
time = end - start
AUCs = [epoch + 1, time, loss_train, rmse, pear, spear, f1, auc, r_square, R2]
scheduler.step()
tester.save_AUCs(AUCs, file_AUCs)
rmse_list.append(rmse)
pear_list.append(pear)
spear_list.append(spear)
f1_list.append(f1)
auc_list.append(auc)
r_square_list.append(r_square)
R2_list.append(R2)
print('\t'.join(map(lambda x: "{:.2f}".format(x), AUCs)), flush=True)
rmse = np.mean(rmse_list)
pear = np.mean(pear_list)
spear = np.mean(spear_list)
f1 = np.mean(f1_list)
auc = np.mean(auc_list)
r_square = np.mean(r_square_list)
R2 = np.mean(R2_list)
if min_rmse > rmse:
tester.save_model(model, file_model_rmse)
min_rmse = rmse
if max_pear < pear:
tester.save_model(model, file_model_pear)
tester.save_model(model, file_model_R2)
max_R2 = R2
max_pear = pear
if max_spear < spear:
tester.save_model(model, file_model_spear)
max_spear = spear
if max_f1 < f1:
tester.save_model(model, file_model_f1)
max_f1 = f1
if max_auc < auc:
tester.save_model(model, file_model_auc)
max_auc = auc
if min_r_square > r_square:
tester.save_model(model, file_model_r_square)
max_r_square = r_square
print("Best performance:", flush=True)
print(AUC, flush=True)
print("best", 0, min_rmse, max_pear, max_spear, max_f1, max_auc, min_r_square, max_R2, flush=True)