-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathhelpers.py
425 lines (374 loc) · 16.3 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 10 08:21:58 2019
@author: elif.ayvali
"""
import numpy as np
import math
from statsmodels.stats.correlation_tools import cov_nearest
class Tools:
def nearestPSD(P):
#other options:not ideal but necessary for robust solutions:
#1) P?1/2P+1/2P' to even out the off-diagonal terms -- for symmetry
#2)Let P=P+eps In×n, where eps is a small scalar to make sure matrix is not ill conditioned
#3) use 64fp arithmetic
return cov_nearest(P)
def rot_to_quat(rot, isprecise=False):
"""Return quaternion from rotation matrix.
If isprecise is True, the input matrix is assumed to be a precise rotation
matrix and a faster algorithm is used.
"""
M = np.array(rot, dtype=np.float64, copy=False)[:4, :4]
if isprecise:
q = np.empty((4, ))
t = np.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 0, 1, 2
if M[1, 1] > M[0, 0]:
i, j, k = 1, 2, 0
if M[2, 2] > M[i, i]:
i, j, k = 2, 0, 1
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q = q[[3, 0, 1, 2]]
q *= 0.5 / np.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = np.array([[m00-m11-m22, 0.0, 0.0, 0.0],
[m01+m10, m11-m00-m22, 0.0, 0.0],
[m02+m20, m12+m21, m22-m00-m11, 0.0],
[m21-m12, m02-m20, m10-m01, m00+m11+m22]])
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[[3, 0, 1, 2], np.argmax(w)]
if q[0] < 0.0:
np.negative(q, q)
return q
def quat_to_rot(q):
''' Calculate rotation matrix corresponding to quaternion
q : 4 element quaternion
M : (3,3) array
Rotation matrix corresponding to input quaternion
'''
w, x, y, z = q
Nq = w*w + x*x + y*y + z*z
if Nq < np.finfo(np.float).eps:
return np.eye(3)
s = 2.0/Nq
X = x*s
Y = y*s
Z = z*s
wX = w*X; wY = w*Y; wZ = w*Z
xX = x*X; xY = x*Y; xZ = x*Z
yY = y*Y; yZ = y*Z; zZ = z*Z
return np.array(
[[ 1.0-(yY+zZ), xY-wZ, xZ+wY ],
[ xY+wZ, 1.0-(xX+zZ), yZ-wX ],
[ xZ-wY, yZ+wX, 1.0-(xX+yY) ]])
def rotmat2axang(matrix):
"""Convert the rotation matrix into the axis-angle notation.
The result is consistent with matlab implementation vrrotmat2vec
Conversion equations
====================
x = Qzy-Qyz
y = Qxz-Qzx
z = Qyx-Qxy
r = hypot(x,hypot(y,z))
t = Qxx+Qyy+Qzz
theta = atan2(r,t-1)
@param matrix: The 3x3 rotation matrix to update.
@type matrix: 3x3 numpy array
@return: The 3D rotation axis and angle.
@rtype: numpy 3D rank-1 array, float
"""
# Axes.
axis = np.zeros(3, np.float64)
axis[0] = matrix[2,1] - matrix[1,2]
axis[1] = matrix[0,2] - matrix[2,0]
axis[2] = matrix[1,0] - matrix[0,1]
# Angle.
r = np.hypot(axis[0], np.hypot(axis[1], axis[2]))
t = matrix[0,0] + matrix[1,1] + matrix[2,2]
theta = math.atan2(r, t-1)
# Normalise the axis.
axis = axis / r
# Return the data.
return axis, theta
def vec2rotmat(angle, axis, point=None):
"""Return matrix to rotate about axis defined by point and axis.
"""
sina = math.sin(angle)
cosa = math.cos(angle)
axis = Tools.__unit_vector(axis[:3])
# rotation matrix around unit vector
R = np.diag([cosa, cosa, cosa])
R += np.outer(axis, axis) * (1.0 - cosa)
axis *= sina
R += np.array([[ 0.0, -axis[2], axis[1]],
[ axis[2], 0.0, -axis[0]],
[-axis[1], axis[0], 0.0]])
M = np.identity(3)
M[:3, :3] = R
if point is not None:
M = np.identity(4)
M[:3, :3] = R
# rotation not around origin
point = np.array(point[:3], dtype=np.float64, copy=False)
M[:3, 3] = point - np.dot(R, point)
return M
def __vec_normalize(vec):
eps=0.00001
norm_vec=np.linalg.norm(vec)
if (norm_vec<eps):
vec_n=np.zeros(vec.size())
else:
vec_n=vec/norm_vec
return vec_n
def __unit_vector(data, axis=None, out=None):
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
"""
if out is None:
data = np.array(data, dtype=np.float64, copy=True)
if data.ndim == 1:
data /= math.sqrt(np.dot(data, data))
return data
else:
if out is not data:
out[:] = np.array(data, copy=False)
data = out
length = np.atleast_1d(np.sum(data*data, axis))
np.sqrt(length, length)
if axis is not None:
length = np.expand_dims(length, axis)
data /= length
if out is None:
return data
def random_quaternion(rand=None):
"""Return uniform random unit quaternion.
"""
if rand is None:
rand = np.random.rand(3)
else:
assert len(rand) == 3
r1 = np.sqrt(1.0 - rand[0])
r2 = np.sqrt(rand[0])
pi2 = math.pi * 2.0
t1 = pi2 * rand[1]
t2 = pi2 * rand[2]
return np.array([math.cos(t2)*r2, math.sin(t1)*r1,
math.cos(t1)*r1, math.sin(t2)*r2])
def rotmat2axang_alt(mat):
"""Return rotation angle and axis from rotation matrix.#wiki:rotationmatrix
This alternative formulation useseigendecomposition of the rotation
matrix which yields the eigenvalues 1 and cos θ ± i sin θ
The result is nconsistent with matlab implementation vrrotmat2vec
R(v,θ)=R(−v,−θ)
"""
R = np.array(mat, dtype=np.float64, copy=False)
# axis: unit eigenvector of R corresponding to eigenvalue of 1
L, W = np.linalg.eig(R.T)
i = np.where(abs(np.real(L) - 1.0) < 1e-8)[0]
if not len(i):
raise ValueError('no unit eigenvector corresponding to eigenvalue 1')
axis = np.real(W[:, i[-1]]).squeeze()
# rotation angle depending on axis
cosa = (np.trace(R) - 1.0) / 2.0
if abs(axis[2]) > 1e-8:
sina = (R[1, 0] + (cosa-1.0)*axis[0]*axis[1]) / axis[2]
elif abs(axis[1]) > 1e-8:
sina = (R[0, 2] + (cosa-1.0)*axis[0]*axis[2]) / axis[1]
else:
sina = (R[2, 1] + (cosa-1.0)*axis[1]*axis[2]) / axis[0]
angle = math.atan2(sina, cosa)
return axis, angle
def rotmat2vec(mat1, rot_type='proper'):
"""
Create an axis-angle np.array from Rotation Matrix:
====================
@param mat: The nx3x3 rotation matrices to convert
@type mat: nx3x3 numpy array
@param rot_type: 'improper' if there is a possibility of
having improper matrices in the input,
'proper' otherwise. 'proper' by default
@type rot_type: string ('proper' or 'improper')
@return: The 3D rotation axis and angle (ax_ang)
5 entries:
First 3: axis
4: angle
5: 1 for proper and -1 for improper
@rtype: numpy 5xn array
"""
mat = np.copy(mat1)
if mat.ndim == 2:
if np.shape(mat) == (3, 3):
mat = np.copy(np.reshape(mat, (1, 3, 3)))
else:
raise Exception('Wrong Input Type')
elif mat.ndim == 3:
if np.shape(mat)[1:] != (3, 3):
raise Exception('Wrong Input Type')
else:
raise Exception('Wrong Input Type')
msz = np.shape(mat)[0]
ax_ang = np.zeros((5, msz))
epsilon = 1e-12
if rot_type == 'proper':
ax_ang[4, :] = np.ones(np.shape(ax_ang[4, :]))
elif rot_type == 'improper':
for i in range(msz):
det1 = np.linalg.det(mat[i, :, :])
if abs(det1 - 1) < epsilon:
ax_ang[4, i] = 1
elif abs(det1 + 1) < epsilon:
ax_ang[4, i] = -1
mat[i, :, :] = -mat[i, :, :]
else:
raise Exception('Matrix is not a rotation: |det| != 1')
else:
raise Exception('Wrong Input parameter for rot_type')
mtrc = mat[:, 0, 0] + mat[:, 1, 1] + mat[:, 2, 2]
ind1 = np.where(abs(mtrc - 3) <= epsilon)[0]
ind1_sz = np.size(ind1)
if np.size(ind1) > 0:
ax_ang[:4, ind1] = np.tile(np.array([0, 1, 0, 0]), (ind1_sz, 1)).transpose()
ind2 = np.where(abs(mtrc + 1) <= epsilon)[0]
ind2_sz = np.size(ind2)
if ind2_sz > 0:
# phi = pi
# This singularity requires elaborate sign ambiguity resolution
# Compute axis of rotation, make sure all elements >= 0
# real signs are obtained by flipping algorithm below
diag_elems = np.concatenate((mat[ind2, 0, 0].reshape(ind2_sz, 1),
mat[ind2, 1, 1].reshape(ind2_sz, 1),
mat[ind2, 2, 2].reshape(ind2_sz, 1)), axis=1)
axis = np.sqrt(np.maximum((diag_elems + 1)/2, np.zeros((ind2_sz, 3))))
# axis elements that are <= epsilon are set to zero
axis = axis*((axis > epsilon).astype(int))
# Flipping
#
# The algorithm uses the elements above diagonal to determine the signs
# of rotation axis coordinate in the singular case Phi = pi.
# All valid combinations of 0, positive and negative values lead to
# 3 different cases:
# If (Sum(signs)) >= 0 ... leave all coordinates positive
# If (Sum(signs)) == -1 and all values are non-zero
# ... flip the coordinate that is missing in the term that has + sign,
# e.g. if 2AyAz is positive, flip x
# If (Sum(signs)) == -1 and 2 values are zero
# ... flip the coord next to the one with non-zero value
# ... ambiguous, we have chosen shift right
# construct vector [M23 M13 M12] ~ [2AyAz 2AxAz 2AxAy]
# (in the order to facilitate flipping): ^
# [no_x no_y no_z ]
m_upper = np.concatenate((mat[ind2, 1, 2].reshape(ind2_sz, 1),
mat[ind2, 0, 2].reshape(ind2_sz, 1),
mat[ind2, 0, 1].reshape(ind2_sz, 1)), axis=1)
# elements with || smaller than epsilon are considered to be zero
signs = np.sign(m_upper)*((abs(m_upper) > epsilon).astype(int))
sum_signs = np.sum(signs, axis=1)
t1 = np.zeros(ind2_sz,)
tind1 = np.where(sum_signs >= 0)[0]
t1[tind1] = np.ones(np.shape(tind1))
tind2 = np.where(np.all(np.vstack(((np.any(signs == 0, axis=1) == False), t1 == 0)), axis=0))[0]
t1[tind2] = 2*np.ones(np.shape(tind2))
tind3 = np.where(t1 == 0)[0]
flip = np.zeros((ind2_sz, 3))
flip[tind1, :] = np.ones((np.shape(tind1)[0], 3))
flip[tind2, :] = np.copy(-signs[tind2, :])
t2 = np.copy(signs[tind3, :])
shifted = np.column_stack((t2[:, 2], t2[:, 0], t2[:, 1]))
flip[tind3, :] = np.copy(shifted + (shifted == 0).astype(int))
axis = axis*flip
ax_ang[:4, ind2] = np.vstack((axis.transpose(), np.pi*(np.ones((1, ind2_sz)))))
ind3 = np.where(np.all(np.vstack((abs(mtrc + 1) > epsilon, abs(mtrc - 3) > epsilon)), axis=0))[0]
ind3_sz = np.size(ind3)
if ind3_sz > 0:
phi = np.arccos((mtrc[ind3]-1)/2)
den = 2*np.sin(phi)
a1 = (mat[ind3, 2, 1]-mat[ind3, 1, 2])/den
a2 = (mat[ind3, 0, 2]-mat[ind3, 2, 0])/den
a3 = (mat[ind3, 1, 0]-mat[ind3, 0, 1])/den
axis = np.column_stack((a1, a2, a3))
ax_ang[:4, ind3] = np.vstack((axis.transpose(), phi.transpose()))
return ax_ang[:4].squeeze(),ax_ang[-1].squeeze()
def mat2euler(M, cy_thresh=None):
''' Discover Euler angle vector from 3x3 matrix
Uses the conventions above.
Parameters
----------
M : array-like, shape (3,3)
cy_thresh : None or scalar, optional
threshold below which to give up on straightforward arctan for
estimating x rotation. If None (default), estimate from
precision of input.
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Notes
-----
If there was no numerical error, the routine could be derived using
Sympy expression for z then y then x rotation matrix, (see
``eulerangles.py`` in ``derivations`` subdirectory)::
[ cos(y)*cos(z), -cos(y)*sin(z), sin(y)],
[cos(x)*sin(z) + cos(z)*sin(x)*sin(y), cos(x)*cos(z) - sin(x)*sin(y)*sin(z), -cos(y)*sin(x)],
[sin(x)*sin(z) - cos(x)*cos(z)*sin(y), cos(z)*sin(x) + cos(x)*sin(y)*sin(z), cos(x)*cos(y)]
This gives the following solutions for ``[z, y, x]``::
z = atan2(-r12, r11)
y = asin(r13)
x = atan2(-r23, r33)
Problems arise when ``cos(y)`` is close to zero, because both of::
z = atan2(cos(y)*sin(z), cos(y)*cos(z))
x = atan2(cos(y)*sin(x), cos(x)*cos(y))
will be close to ``atan2(0, 0)``, and highly unstable.
The ``cy`` fix for numerical instability in this code is from: *Euler Angle
Conversion* by Ken Shoemake, p222-9 ; in: *Graphics Gems IV*, Paul Heckbert
(editor), Academic Press, 1994, ISBN: 0123361559. Specifically it comes
from ``EulerAngles.c`` and deals with the case where cos(y) is close to
zero:
* http://www.graphicsgems.org/
* https://github.com/erich666/GraphicsGems/blob/master/gemsiv/euler_angle/EulerAngles.c#L68
The code appears to be licensed (from the website) as "can be used without
restrictions".
'''
M = np.asarray(M)
if cy_thresh is None:
try:
cy_thresh = np.finfo(M.dtype).eps * 4
except ValueError:
cy_thresh = _FLOAT_EPS_4
r11, r12, r13, r21, r22, r23, r31, r32, r33 = M.flat
# (-cos(y)*sin(x))**2 + (cos(x)*cos(y))**2) =
# (cos(y)**2)(sin(x)**2 + cos(x)**2) ==> (Pythagoras)
# cos(y) = sqrt((-cos(y)*sin(x))**2 + (cos(x)*cos(y))**2)
cy = math.sqrt(r23 * r23 + r33 * r33)
if cy > cy_thresh: # cos(y) not close to zero, standard form
z = math.atan2(-r12, r11) # atan2(cos(y)*sin(z), cos(y)*cos(z))
y = math.atan2(r13, cy) # atan2(sin(y), cy)
x = math.atan2(-r23, r33) # atan2(cos(y)*sin(x), cos(x)*cos(y))
else: # cos(y) (close to) zero, so x -> 0.0 (see above)
# so r21 -> sin(z), r22 -> cos(z) and
z = math.atan2(r21, r22)
y = math.atan2(r13, cy) # atan2(sin(y), cy)
x = 0.0
return z, y, x