-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathNAMESPACE
111 lines (89 loc) · 3.68 KB
/
NAMESPACE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
importFrom("methods",
"is", "new", "slot", "slotNames", "callNextMethod", "getMethod")
importFrom("utils",
# "sessionInfo",
"packageDescription", "str", "write.table", "packageVersion",
"capture.output", "head", "tail", "getFromNamespace", "compareVersion")
importFrom("stats",
"approx", "density", "median",
"dbinom", "dnorm", "pnorm", "rgamma", "rnorm",
"runif", "sd", "quantile", "rWishart", "cov", "cor",
"coef", "logLik",
"residuals", "resid",
"fitted.values", "fitted", "na.omit",
"predict",
"update",
"anova",
"vcov", "nobs", "cov2cor")
importFrom("graphics",
"plot", "hist", "pairs", "legend", "par", "plot.new",
"polygon")
importFrom("grDevices",
"adjustcolor")
importFrom("lavaan",
"lavaan", "logLik",
"fitMeasures", "fitmeasures",
"inspect", "lavInspect", "lavTech", "lavNames",
"lavParseModelString", "lavMatrixRepresentation",
"lav_func_jacobian_complex", "lav_func_jacobian_simple",
"lav_partable_labels", "lavaanify",
"lav_model_get_parameters", "lav_model_implied",
"lav_model_set_parameters", "lav_model_vcov_se",
"lav_partable_attributes",
"modificationIndices", "parTable", "parameterEstimates",
"lavPredict", "standardizedSolution", "lav_data_update")
importFrom("coda",
"mcmc.list",
"mcmc", "as.mcmc",
"HPDinterval")
importFrom("mnormt",
"dmnorm",
"rmnorm",
"sadmvn")
importFrom("nonnest2",
"llcont")
importFrom("rstan",
"sampling", "stan", "vb")
importFrom("loo",
"loo", "waic", "loo_compare", "relative_eff")
importFrom("Matrix",
"Matrix")
importFrom("future.apply",
"future_lapply", "future_sapply")
importFrom("tmvnsim",
"tmvnsim")
## need to import something, though others could be used
importFrom("bayesplot",
"mcmc_trace")
## "mcmc_acf", "mcmc_acf_bar", "mcmc_areas",
## "mcmc_areas_data", "mcmc_areas_ridges",
## "mcmc_areas_ridges_data", "mcmc_combo", "mcmc_dens",
## "mcmc_dens_chains", "mcmc_dens_chains_data",
## "mcmc_dens_overlay", "mcmc_hex", "mcmc_hist",
## "mcmc_hist_by_chain", "mcmc_intervals",
## "mcmc_intervals_data", "mcmc_neff", "mcmc_neff_data",
## "mcmc_neff_hist", "mcmc_nuts_acceptance",
## "mcmc_nuts_divergence", "mcmc_nuts_energy",
## "mcmc_nuts_stepsize", "mcmc_nuts_treedepth", "mcmc_pairs",
## "mcmc_parcoord", "mcmc_parcoord_data", "mcmc_rank_hist",
## "mcmc_rank_overlay", "mcmc_recover_hist",
## "mcmc_recover_intervals", "mcmc_recover_scatter",
## "mcmc_rhat", "mcmc_rhat_data", "mcmc_rhat_hist",
## "mcmc_scatter", "mcmc_trace", "mcmc_trace_data",
## "mcmc_trace_highlight", "mcmc_violin")
import(Rcpp)
importFrom("RcppParallel", "CxxFlags", "RcppParallelLibs")
import(rstantools)
export("blavaan", "bcfa", "bsem", "bgrowth", "dpriors", "BF", "blavCompare",
"blavTech", "blavInspect", "blavFitIndices", "labelfun", "standardizedposterior",
"standardizedPosterior", "ppmc", "blavPredict", "sampleData")
exportClasses("blavaan", "blavPPMC", "blavFitIndices")
exportMethods("summary", "coef", "show", "predict")
S3method(plot, blavaan)
#S3method(summary, blavaan)
S3method(summary, blavPPMC)
S3method(plot, blavPPMC)
S3method(hist, blavPPMC)
S3method(pairs, blavPPMC)
S3method(summary, blavFitIndices)
useDynLib(blavaan, .registration = TRUE)