forked from aimagelab/novelty-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
99 lines (84 loc) · 3.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import collections
import random
import re
from typing import List
import numpy as np
import torch
from torch.utils.data.dataloader import _use_shared_memory
from torch.utils.data.dataloader import int_classes
from torch.utils.data.dataloader import numpy_type_map
from torch.utils.data.dataloader import string_classes
def set_random_seed(seed):
# type: (int) -> None
"""
Sets random seeds.
:param seed: the seed to be set for all libraries.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def normalize(samples, min, max):
# type: (np.ndarray, float, float) -> np.ndarray
"""
Normalize scores as in Eq. 10
:param samples: the scores to be normalized.
:param min: the minimum of the desired scores.
:param max: the maximum of the desired scores.
:return: the normalized scores
"""
return (samples - min) / (max - min)
def novelty_score(sample_llk_norm, sample_rec_norm):
# type: (np.ndarray, np.ndarray) -> np.ndarray
"""
Computes the normalized novelty score given likelihood scores, reconstruction scores
and normalization coefficients (Eq. 9-10).
:param sample_llk_norm: array of (normalized) log-likelihood scores.
:param sample_rec_norm: array of (normalized) reconstruction scores.
:return: array of novelty scores.
"""
# Sum
ns = sample_llk_norm + sample_rec_norm
return ns
def concat_collate(batch):
# type: (List[torch.Tensor]) -> torch.Tensor
"""
Puts each data field into a tensor stacking along the first dimension.
This is different to the default pytorch collate that stacks samples rather than
concatenating them.
:param batch: the input batch to be collated.
"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.cat(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return torch.cat([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int_classes):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], collections.Mapping):
return {key: concat_collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], collections.Sequence):
transposed = zip(*batch)
return [concat_collate(samples) for samples in transposed]
raise TypeError((error_msg.format(type(batch[0]))))