-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmultibrot_mojo_parallelize.mojo
102 lines (80 loc) · 2.99 KB
/
multibrot_mojo_parallelize.mojo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from complex import ComplexSIMD
from math import iota
from algorithm import parallelize, vectorize
from tensor import Tensor
from utils.index import Index
alias float_type = DType.float64
alias simd_width = 2 * simdwidthof[float_type]()
alias width = 960
alias height = 960
alias MAX_ITERS = 200
alias min_x = -2.0
alias max_x = 0.6
alias min_y = -1.5
alias max_y = 1.5
fn mandelbrot_kernel_SIMD[
simd_width: Int
](c: ComplexSIMD[float_type, simd_width]) -> SIMD[float_type, simd_width]:
"""A vectorized implementation of the inner mandelbrot computation."""
let cx = c.re
let cy = c.im
var x = SIMD[float_type, simd_width](0)
var y = SIMD[float_type, simd_width](0)
var y2 = SIMD[float_type, simd_width](0)
var iters = SIMD[float_type, simd_width](0)
var t: SIMD[DType.bool, simd_width] = True
for i in range(MAX_ITERS):
if not t.reduce_or():
break
y2 = y * y
y = x.fma(y + y, cy)
t = x.fma(x, y2) <= 4
x = x.fma(x, cx - y2)
iters = t.select(iters + 1, iters)
return iters
fn compute_multibrot_parallelized() -> Tensor[float_type]:
let t = Tensor[float_type](height, width)
@parameter
fn worker(row: Int):
let scale_x = (max_x - min_x) / width
let scale_y = (max_y - min_y) / height
@parameter
fn compute_vector[simd_width: Int](col: Int):
"""Each time we operate on a `simd_width` vector of pixels."""
let cx = min_x + (col + iota[float_type, simd_width]()) * scale_x
let cy = min_y + row * scale_y
let c = ComplexSIMD[float_type, simd_width](cx, cy)
t.data().simd_store[simd_width](
row * width + col, mandelbrot_kernel_SIMD[simd_width](c)
)
# Vectorize the call to compute_vector where call gets a chunk of pixels.
vectorize[simd_width, compute_vector](width)
# Parallelized
parallelize[worker](height, height)
return t
def main():
_ = compute_multibrot_parallelized()
# let multibrot = compute_multibrot_parallelized()
# try:
# _ = show_plot(multibrot)
# except e:
# print("failed to show plot:", e)
# def show_plot(tensor: Tensor[float_type]):
# alias scale = 10
# alias dpi = 64
# from python import Python
# np = Python.import_module("numpy")
# plt = Python.import_module("matplotlib.pyplot")
# colors = Python.import_module("matplotlib.colors")
# numpy_array = np.zeros((height, width), np.float64)
# for row in range(height):
# for col in range(width):
# numpy_array.itemset((col, row), tensor[col, row])
# fig = plt.figure(1, [scale, scale * height // width], dpi)
# ax = fig.add_axes((0.0, 0.0, 1.0, 1.0))
# light = colors.LightSource(315, 10, 0, 1, 1, 0)
# image = light.shade(numpy_array, plt.cm.hot, colors.PowerNorm(0.3), "hsv", 0, 0, 1.5)
# plt.imshow(image)
# plt.axis("off")
# plt.savefig("multibrot_mojo_ parallelize.mojo.png")
# plt.show()