-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathexecute_grb.py
121 lines (93 loc) · 4.24 KB
/
execute_grb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
import logging
from time import time
import gurobipy as grb
import helper
import process_data
from parameters import model_params
__author__ = 'Ehsan Khodabandeh'
__version__ = '1.0'
# ====================================
LOG_FORMAT = '%(asctime)s %(name)-12s %(levelname)s : %(message)s'
logging.basicConfig(format=LOG_FORMAT, level=logging.INFO)
# Since the level here is INFO, all the logger.debug below are not displayed
logger = logging.getLogger(__name__ + ': ')
# ================== Set up data ==================
input_df_dict, input_param_dict = process_data.load_data()
logger.info('Data is loaded!')
# ================== Set up the optimization model ==================
"""
Parameters:
h: unit holding cost
p: production capacity per month
I_0: initial_inventory
c_t: unit production cost in month t
d_t: demand of month t
Variables:
X_t: Amount produced in month t
I_t: Inventory at the end of period t
Constraints:
Inventory Constraints: I_{t-1} + X_t - d_t = I_t
Capacity Constraints: X_t <= p
Objective: Min Sum(h*I_t + c_t*X_t)
"""
model = grb.Model('prod_planning')
start = time()
# ================== Decision variables ==================
production_variables = model.addVars(input_df_dict['input_data'].index, vtype=grb.GRB.CONTINUOUS, name="X")
inventory_variables = model.addVars(input_df_dict['input_data'].index, vtype=grb.GRB.CONTINUOUS, name="I")
# Alternative way of creating the variables
# production_variables = {index: model.addVar(name='X_' + str(row['period']),
# vtype=grb.GRB.CONTINUOUS)
# for index, row in input_df_dict['input_data'].iterrows()}
#
# inventory_variables = {index: model.addVar(name='I_' + str(row['period']),
# vtype=grb.GRB.CONTINUOUS)
# for index, row in input_df_dict['input_data'].iterrows()}
logger.debug("var declaration time: {:.6f}".format(time() - start))
# ================== Inventory balance constraints ==================
inv_balance_constraints = {
period: model.addConstr(
lhs=inventory_variables[period - 1] + production_variables[period] - inventory_variables[period],
sense=grb.GRB.EQUAL,
name='inv_balance' + str(period),
rhs=value.demand)
for period, value in input_df_dict['input_data'].iloc[1:].iterrows()}
# inv balance for first period
first_period_inv_balance_constraints = model.addConstr(
lhs=production_variables[0] - inventory_variables[0],
sense=grb.GRB.EQUAL,
name='inv_balance0',
rhs=input_df_dict['input_data'].iloc[0].demand - input_param_dict['initial_inventory'])
# ================== Production capacity constraints ==================
production_capacity_constraints = {
index: model.addConstr(
lhs=value,
sense=grb.GRB.LESS_EQUAL,
name='prod_cap_month_' + str(index),
rhs=input_df_dict['input_data'].iloc[index].production_capacity)
for index, value in production_variables.items()}
# ================== Costs and objective function ==================
total_holding_cost = input_param_dict['holding_cost'] * grb.quicksum(inventory_variables.values())
total_production_cost = grb.quicksum(row['production_cost'] * production_variables[index]
for index, row in input_df_dict['input_data'].iterrows())
objective = total_holding_cost + total_production_cost
model.setObjective(objective, grb.GRB.MINIMIZE)
logger.info('Model creation time in sec: {:.4f}'.format(time() - start))
# ================== Optimization ==================
if model_params['write_lp']:
logger.info('Writing the lp file!')
model.write(model.ModelName + '.lp')
if not model_params['write_log']:
model.setParam('OutputFlag', 0)
logger.info('Optimization starts!')
model.optimize()
if model.Status == grb.GRB.OPTIMAL:
logger.info('The solution is optimal and the objective value '
'is ${:,.2f}!'.format(model.objVal))
# ================== Output ==================
dict_of_variables = {'production_variables': production_variables,
'inventory_variables': inventory_variables}
output_df = process_data.write_outputs(dict_of_variables, attr='x')
helper.write_to_csv(output_df)
logger.info('Outputs are written to csv!')