-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradientesconju.py
130 lines (101 loc) · 2.7 KB
/
gradientesconju.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import matplotlib.pyplot as plt
import numpy as np
import math
from timeit import default_timer as timer
#Función, gradiente y Hessiano
def f(x):
"""Funcion a Evaluar"""
f = 2*x[0]**2+2*x[0]*x[1]+10*x[1]**2 + 20 + 3*x[0]-4*x[1]
return f
# gradiente ∇f
def grad(x):
g = np.array([
4*x[0] + 2*x[1] + 3,
2*x[0] + 20*x[1] - 4
])
return g
def hessiano(x):
# return axay
return np.array([
[4, 2],
[2, 20]
])
# dirección del gradiente p
def dirgrad(x):
vgrad = grad(x)
magGrad = np.sqrt(vgrad.dot(vgrad))
p = -vgrad/magGrad
return p
# dirección del gradiente p
def dirgrad(x):
vgrad = grad(x)
magGrad = np.sqrt(vgrad.dot(vgrad))
p = -vgrad/magGrad
return p
def phiAlpha(x0, alpha, p):
paX = x0 + p * alpha
return f(paX)
def phipAlpha(x0, alpha, p):
x = x0 + alpha * p
vgrad = grad(x)
return (np.dot(vgrad, p))
def phipp(x0, alpha, p):
x = x0 + alpha * p
ahess = hessiano(x)
return np.dot(np.dot(ahess, p), p)
def exhaustivoRefinado(p, xini, alpha=0, h=0.1, tol=1e-6):
"""Busqueda de minimo con metodo exhaustivo refinado. puedes cambiar el paso
Retorna f(a) y alpha
"""
k = 0
while h > tol:
while phiAlpha(xini, alpha+h, p) < phiAlpha(xini, alpha, p):
alpha = alpha + h
fnow = phiAlpha(xini, alpha, p)
# print(k, h, fnow)
k += 1
alpha = alpha-h
h = h / 10
return alpha
def almd(x0, r, p):
return -np.dot(r, p) / np.dot(np.dot(hessiano(x0), p), p)
def beta(x0, r, p):
return np.dot(np.dot(hessiano(x0), p), r)/np.dot(np.dot(hessiano(x0), p), p)
def gradConjugadoPreliminar(x0, b, k=0, tol=1e-6):
r = grad(x0)
p = r*-1
print(x0)
print("x0, f(x^k), aMD, b")
while np.linalg.norm(grad(x0)) >= tol:
aMD = almd(x0, r, p)
x0 = x0 + aMD*p
r = np.dot(hessiano(x0), x0) - b
b = beta(x0, r, p)
p = -r + b*p
print(x0, f(x0), aMD, b)
return x0
def gradienteConjugado(x0, b, k=0, tol=1e-6):
r = grad(x0)
p = r*-1
print(x0)
print("x0, f(x^k), aMD, b")
rDotr = np.dot(r, r)
AdotP = np.dot(hessiano(x0), p)
while np.linalg.norm(grad(x0)) >= tol:
alpha = rDotr / np.dot(AdotP, p)
x0 = x0 + alpha*p
r1 = r + alpha * AdotP
b = (np.dot(r1,r1))/rDotr
p = -r1 + b*p
print(x0, f(x0), alpha, b)
r = r1
rDotr = np.dot(r, r)
AdotP = np.dot(hessiano(x0), p)
return x0
x0 = np.array([20, 30])
b = [-3, 4]
print("<==Preliminar==>")
print(gradConjugadoPreliminar(x0, b))
print("<==Conjugado==>")
print(gradienteConjugado(x0,b))
# -0.8947368421, 0.28947368421