-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwidsutil.py
231 lines (199 loc) · 15.3 KB
/
widsutil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, OrdinalEncoder
#from logging import getLogger, Formatter, StreamHandler, FileHandler, INFO, ERROR
from sklearn.compose import make_column_selector as selector
from sklearn.compose import ColumnTransformer
#from sklearn.metrics import roc_auc_score
#from sklearn.model_selection import KFold
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
import os, gc, sys, time, random, math
from contextlib import contextmanager
#from matplotlib import pyplot as plt
#from IPython.display import display
from scipy import stats, special
from sklearn import set_config
from functools import partial
#import lightgbm as lgb
#import seaborn as sns
import pandas as pd
import typing as tp
import numpy as np
class DataPreprocess:
def __init__(self, data):
self.df= data
def dataprep(self, train):
#if(train['pao2fio2ratio_apache']):
train = train.rename(columns={'pao2_apache':'pao2fio2ratio_apache','ph_apache':'arterial_ph_apache'})
train.loc[train.age == 0, 'age'] = np.nan
train = train.drop(['readmission_status','encounter_id','hospital_id'], axis=1)
train = train.replace([np.inf, -np.inf], np.nan)
#min max value collector
min_max_feats=[f[:-4] for f in train.columns if f[-4:]=='_min']
for col in min_max_feats:
train.loc[train[f'{col}_min'] > train[f'{col}_max'], [f'{col}_min', f'{col}_max']] = train.loc[train[f'{col}_min'] > train[f'{col}_max'], [f'{col}_max', f'{col}_min']].values
#print the missing count
print(f'Percent of Nans in Train Data : {round(train.isna().sum().sum()/len(train), 2)}')
return train
#encoding
def lblencoder(self, train):
lbls = {}
for col in train.select_dtypes(exclude = np.number).columns.tolist():
le = LabelEncoder().fit(pd.concat([train[col].astype(str)]))
train[col] = le.transform(train[col].astype(str))
lbls[col] = le
print('Categorical columns:', list(lbls.keys()))
return train
# transform function
def datatransform(self, train):
#transformation
train['comorbidity_score'] = train['aids'].values * 23 + train['cirrhosis'] * 4 + train['hepatic_failure'] * 16 + train['immunosuppression'] * 10 + train['leukemia'] * 10 + train['lymphoma'] * 13 + train['solid_tumor_with_metastasis'] * 11
train['comorbidity_score'] = train['comorbidity_score'].fillna(0)
train['gcs_sum'] = train['gcs_eyes_apache']+train['gcs_motor_apache']+train['gcs_verbal_apache']
train['gcs_sum'] = train['gcs_sum'].fillna(0)
#train['apache_2_diagnosis_type'] = train.apache_2_diagnosis.round(-1).fillna(-100).astype('int32')
#train['apache_3j_diagnosis_type'] = train.apache_3j_diagnosis.round(-2).fillna(-100).astype('int32')
train['apache_2_diagnosis_type'] = train.apache_2_diagnosis.round(-1).fillna(0).astype('int32')
train['apache_3j_diagnosis_type'] = train.apache_3j_diagnosis.round(-2).fillna(0).astype('int32')
train['bmi_type'] = train.bmi.fillna(0).apply(lambda x: 5 * (round(int(x)/5)))
train['height_type'] = train.height.fillna(0).apply(lambda x: 5 * (round(int(x)/5)))
train['weight_type'] = train.weight.fillna(0).apply(lambda x: 5 * (round(int(x)/5)))
train['age_type'] = train.age.fillna(0).apply(lambda x: 10 * (round(int(x)/10)))
train['gcs_sum_type'] = train.gcs_sum.fillna(0).apply(lambda x: 2.5 * (round(int(x)/2.5))).divide(2.5)
train['apache_3j_diagnosis_x'] = train['apache_3j_diagnosis'].astype('str').str.split('.',n=1,expand=True)[0]
train['apache_2_diagnosis_x'] = train['apache_2_diagnosis'].astype('str').str.split('.',n=1,expand=True)[0]
#train['apache_3j_diagnosis_split1'] = np.where(train['apache_3j_diagnosis'].isna() , np.nan , train['apache_3j_diagnosis'].astype('str').str.split('.',n=1,expand=True)[1] )
#train['apache_2_diagnosis_split1'] = np.where(train['apache_2_diagnosis'].isna() , np.nan , train['apache_2_diagnosis'].apply(lambda x : x % 10) )
train['apache_3j_diagnosis_split1'] = np.where(train['apache_3j_diagnosis'].isna() , 0 , train['apache_3j_diagnosis'].astype('str').str.split('.',n=1,expand=True)[1] )
train['apache_2_diagnosis_split1'] = np.where(train['apache_2_diagnosis'].isna() , 0 , train['apache_2_diagnosis'].apply(lambda x : x % 10) )
IDENTIFYING_COLS = ['age_type', 'height_type', 'ethnicity', 'gender', 'bmi_type']
train['profile'] = train[IDENTIFYING_COLS].apply(lambda x: hash(tuple(x)), axis = 1)
print(f'Number of unique Profiles : {train["profile"].nunique()}')
#BMI transforation
train["diff_bmi"] = train['bmi'].copy()
train['bmi'] = train['weight']/((train['height']/100)**2)
train["diff_bmi"] = train["diff_bmi"]-train['bmi']
train['pre_icu_los_days'] = train['pre_icu_los_days'].apply(lambda x:special.expit(x) )
train['abmi'] = train['age']/train['bmi']
train['agi'] = train['weight']/train['age']
# daily and Hourly labstests columns transformation
d_cols = [c for c in train.columns if(c.startswith("d1"))]
h_cols = [c for c in train.columns if(c.startswith("h1"))]
train["dailyLabs_row_nan_count"] = train[d_cols].isna().sum(axis=1)
train["hourlyLabs_row_nan_count"] = train[h_cols].isna().sum(axis=1)
train["diff_labTestsRun_daily_hourly"] = train["dailyLabs_row_nan_count"] - train["hourlyLabs_row_nan_count"]
return train
def labtesttransform(self, train):
lab_col = [c for c in train.columns if((c.startswith("h1")) | (c.startswith("d1")))]
lab_col_names = list(set(list(map(lambda i: i[ 3 : -4], lab_col))))
print("len lab_col",len(lab_col))
print("len lab_col_names",len(lab_col_names))
print("lab_col_names\n",lab_col_names)
first_h = []
print()
for v in lab_col_names:
first_h.append(v+"_started_after_firstHour")
#colsx = [x for x in test_df.columns if v in x]
#colsx = train_df.columns
#print(train.loc[:, colsx].isna().sum(axis=1))
#train[v+"_nans"] = train.loc[:, colsx].isna().sum(axis=1)
train[v+"_d1_value_range"] = train[f"d1_{v}_max"].subtract(train[f"d1_{v}_min"])
train[v+"_h1_value_range"] = train[f"h1_{v}_max"].subtract(train[f"h1_{v}_min"])
train[v+"_d1_h1_max_eq"] = (train[f"d1_{v}_max"]== train[f"h1_{v}_max"]).astype(np.int8)
train[v+"_d1_h1_min_eq"] = (train[f"d1_{v}_min"]== train[f"h1_{v}_min"]).astype(np.int8)
train[v+"_d1_zero_range"] = (train[v+"_d1_value_range"] == 0).astype(np.int8)
train[v+"_h1_zero_range"] =(train[v+"_h1_value_range"] == 0).astype(np.int8)
train[v+"_tot_change_value_range_normed"] = abs((train[v+"_d1_value_range"].div(train[v+"_h1_value_range"])))#.div(df[f"d1_{v}_max"]))
train[v+"_started_after_firstHour"] = ((train[f"h1_{v}_max"].isna()) & (train[f"h1_{v}_min"].isna())) & (~train[f"d1_{v}_max"].isna())
train[v+"_day_more_extreme"] = ((train[f"d1_{v}_max"]>train[f"h1_{v}_max"]) | (train[f"d1_{v}_min"]<train[f"h1_{v}_min"]))
train[v+"_day_more_extreme"].fillna(False)
train["total_Tests_started_After_firstHour"] = train[first_h].sum(axis=1)
gc.collect()
train["total_Tests_started_After_firstHour"].describe()
return train
def dataparametertfm(self, train):
train['diasbp_indicator'] = (
(train['d1_diasbp_invasive_max'] == train['d1_diasbp_max']) & (train['d1_diasbp_noninvasive_max']==train['d1_diasbp_invasive_max'])|
(train['d1_diasbp_invasive_min'] == train['d1_diasbp_min']) & (train['d1_diasbp_noninvasive_min']==train['d1_diasbp_invasive_min'])|
(train['h1_diasbp_invasive_max'] == train['h1_diasbp_max']) & (train['h1_diasbp_noninvasive_max']==train['h1_diasbp_invasive_max'])|
(train['h1_diasbp_invasive_min'] == train['h1_diasbp_min']) & (train['h1_diasbp_noninvasive_min']==train['h1_diasbp_invasive_min'])
).astype(np.int8)
train['mbp_indicator'] = (
(train['d1_mbp_invasive_max'] == train['d1_mbp_max']) & (train['d1_mbp_noninvasive_max']==train['d1_mbp_invasive_max'])|
(train['d1_mbp_invasive_min'] == train['d1_mbp_min']) & (train['d1_mbp_noninvasive_min']==train['d1_mbp_invasive_min'])|
(train['h1_mbp_invasive_max'] == train['h1_mbp_max']) & (train['h1_mbp_noninvasive_max']==train['h1_mbp_invasive_max'])|
(train['h1_mbp_invasive_min'] == train['h1_mbp_min']) & (train['h1_mbp_noninvasive_min']==train['h1_mbp_invasive_min'])
).astype(np.int8)
train['sysbp_indicator'] = (
(train['d1_sysbp_invasive_max'] == train['d1_sysbp_max']) & (train['d1_sysbp_noninvasive_max']==train['d1_sysbp_invasive_max'])|
(train['d1_sysbp_invasive_min'] == train['d1_sysbp_min']) & (train['d1_sysbp_noninvasive_min']==train['d1_sysbp_invasive_min'])|
(train['h1_sysbp_invasive_max'] == train['h1_sysbp_max']) & (train['h1_sysbp_noninvasive_max']==train['h1_sysbp_invasive_max'])|
(train['h1_sysbp_invasive_min'] == train['h1_sysbp_min']) & (train['h1_sysbp_noninvasive_min']==train['h1_sysbp_invasive_min'])
).astype(np.int8)
train['d1_mbp_invnoninv_max_diff'] = train['d1_mbp_invasive_max'] - train['d1_mbp_noninvasive_max']
train['h1_mbp_invnoninv_max_diff'] = train['h1_mbp_invasive_max'] - train['h1_mbp_noninvasive_max']
train['d1_mbp_invnoninv_min_diff'] = train['d1_mbp_invasive_min'] - train['d1_mbp_noninvasive_min']
train['h1_mbp_invnoninv_min_diff'] = train['h1_mbp_invasive_min'] - train['h1_mbp_noninvasive_min']
train['d1_diasbp_invnoninv_max_diff'] = train['d1_diasbp_invasive_max'] - train['d1_diasbp_noninvasive_max']
train['h1_diasbp_invnoninv_max_diff'] = train['h1_diasbp_invasive_max'] - train['h1_diasbp_noninvasive_max']
train['d1_diasbp_invnoninv_min_diff'] = train['d1_diasbp_invasive_min'] - train['d1_diasbp_noninvasive_min']
train['h1_diasbp_invnoninv_min_diff'] = train['h1_diasbp_invasive_min'] - train['h1_diasbp_noninvasive_min']
train['d1_sysbp_invnoninv_max_diff'] = train['d1_sysbp_invasive_max'] - train['d1_sysbp_noninvasive_max']
train['h1_sysbp_invnoninv_max_diff'] = train['h1_sysbp_invasive_max'] - train['h1_sysbp_noninvasive_max']
train['d1_sysbp_invnoninv_min_diff'] = train['d1_sysbp_invasive_min'] - train['d1_sysbp_noninvasive_min']
train['h1_sysbp_invnoninv_min_diff'] = train['h1_sysbp_invasive_min'] - train['h1_sysbp_noninvasive_min']
for v in ['albumin','bilirubin','bun','glucose','hematocrit','pao2fio2ratio','arterial_ph','resprate','sodium','temp','wbc','creatinine']:
train[f'{v}_indicator'] = (((train[f'{v}_apache']==train[f'd1_{v}_max']) & (train[f'd1_{v}_max']==train[f'h1_{v}_max'])) |
((train[f'{v}_apache']==train[f'd1_{v}_max']) & (train[f'd1_{v}_max']==train[f'd1_{v}_min'])) |
((train[f'{v}_apache']==train[f'd1_{v}_max']) & (train[f'd1_{v}_max']==train[f'h1_{v}_min'])) |
((train[f'{v}_apache']==train[f'h1_{v}_max']) & (train[f'h1_{v}_max']==train[f'd1_{v}_max'])) |
((train[f'{v}_apache']==train[f'h1_{v}_max']) & (train[f'h1_{v}_max']==train[f'h1_{v}_min'])) |
((train[f'{v}_apache']==train[f'h1_{v}_max']) & (train[f'h1_{v}_max']==train[f'd1_{v}_min'])) |
((train[f'{v}_apache']==train[f'd1_{v}_min']) & (train[f'd1_{v}_min']==train[f'd1_{v}_max'])) |
((train[f'{v}_apache']==train[f'd1_{v}_min']) & (train[f'd1_{v}_min']==train[f'h1_{v}_min'])) |
((train[f'{v}_apache']==train[f'd1_{v}_min']) & (train[f'd1_{v}_min']==train[f'h1_{v}_max'])) |
((train[f'{v}_apache']==train[f'h1_{v}_min']) & (train[f'h1_{v}_min']==train[f'h1_{v}_max'])) |
((train[f'{v}_apache']==train[f'h1_{v}_min']) & (train[f'h1_{v}_min']==train[f'd1_{v}_min'])) |
((train[f'{v}_apache']==train[f'h1_{v}_min']) & (train[f'h1_{v}_min']==train[f'd1_{v}_max']))
).astype(np.int8)
return train
def dataoutliertfm(self, train):
more_extreme_cols = [c for c in train.columns if(c.endswith("_day_more_extreme"))]
train["total_day_more_extreme"] = train[more_extreme_cols].sum(axis=1)
train["d1_resprate_div_mbp_min"] = train["d1_resprate_min"].div(train["d1_mbp_min"])
train["d1_resprate_div_sysbp_min"] = train["d1_resprate_min"].div(train["d1_sysbp_min"])
train["d1_lactate_min_div_diasbp_min"] = train["d1_lactate_min"].div(train["d1_diasbp_min"])
train["d1_heartrate_min_div_d1_sysbp_min"] = train["d1_heartrate_min"].div(train["d1_sysbp_min"])
train["d1_hco3_div"]= train["d1_hco3_max"].div(train["d1_hco3_min"])
train["d1_resprate_times_resprate"] = train["d1_resprate_min"].multiply(train["d1_resprate_max"])
train["left_average_spo2"] = (2*train["d1_spo2_max"] + train["d1_spo2_min"])/3
train["total_chronic"] = train[["aids","cirrhosis", 'hepatic_failure']].sum(axis=1)
train["total_cancer_immuno"] = train[[ 'immunosuppression', 'leukemia', 'lymphoma', 'solid_tumor_with_metastasis']].sum(axis=1)
train["has_complicator"] = train[["aids","cirrhosis", 'hepatic_failure',
'immunosuppression', 'leukemia', 'lymphoma', 'solid_tumor_with_metastasis']].max(axis=1)
train[["has_complicator","total_chronic","total_cancer_immuno","has_complicator"]].describe()
#missing values
train['apache_3j'] = np.where(train['apache_3j_diagnosis_type']<0 , np.nan ,
np.where(train['apache_3j_diagnosis_type'] < 200, 'Cardiovascular' ,
np.where(train['apache_3j_diagnosis_type'] < 400, 'Respiratory' ,
np.where(train['apache_3j_diagnosis_type'] < 500, 'Neurological' ,
np.where(train['apache_3j_diagnosis_type'] < 600, 'Sepsis' ,
np.where(train['apache_3j_diagnosis_type'] < 800, 'Trauma' ,
np.where(train['apache_3j_diagnosis_type'] < 900, 'Haematological' ,
np.where(train['apache_3j_diagnosis_type'] < 1000, 'Renal/Genitourinary' ,
np.where(train['apache_3j_diagnosis_type'] < 1200, 'Musculoskeletal/Skin disease' , 'Operative Sub-Diagnosis Codes' ))))))))
)
le = LabelEncoder()
train['apache_3j'] = le.fit_transform(train['apache_3j'])
cols = ['apache_3j_diagnosis_x', 'apache_2_diagnosis_x', 'apache_3j_diagnosis_split1', 'apache_3j']
for i in cols:
train[i] = pd.to_numeric(train[i],errors='coerce')
gc.collect()
return train
def preprocess(self):
self.df = self.dataprep(self.df)
self.df = self.lblencoder(self.df)
self.df =self.datatransform(self.df)
self.df =self.labtesttransform(self.df)
self.df =self.dataparametertfm(self.df)
self.df = self.dataoutliertfm(self.df)
return self.df