forked from WaterLily-jl/WaterLily.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetrics.jl
81 lines (72 loc) · 2.34 KB
/
Metrics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
using LinearAlgebra: eigvals,norm2,×,⋅
"""
ke(I::CartesianIndex,u,U=0)
Compute ½|u-U|² at center of cell `I` where `U` can be used
to subtract a background flow.
"""
ke(I::CartesianIndex{m},u,U=zeros(m)) where m = 0.125sum(@inbounds(abs2(u[I,i]+u[I+δ(i,I),i]-2U[i])) for i ∈ 1:m)
"""
∂(i,j,I,u)
Compute ∂uᵢ/∂xⱼ at center of cell `I`. Cross terms are computed
less accurately than inline terms because of the staggered grid.
"""
@fastmath @inline ∂(i,j,I,u) = (i==j ? ∂(i,I,u) :
@inbounds 0.25*(u[I+δ(j,I),i]+u[I+δ(j,I)+δ(i,I),i]
-u[I-δ(j,I),i]-u[I-δ(j,I)+δ(i,I),i]))
"""
λ₂(I::CartesianIndex{3},u)
λ₂ is a deformation tensor metric to identify vortex cores.
See https://en.wikipedia.org/wiki/Lambda2_method and
Jeong, J., & Hussain, F. doi:10.1017/S0022112095000462
"""
function λ₂(I::CartesianIndex{3},u)
J = [∂(i,j,I,u) for i ∈ 1:3, j ∈ 1:3]
S,Ω = (J+J')/2,(J-J')/2
eigvals(S^2+Ω^2)[2]
end
function permute(f,i)
j,k = i%3+1,(i+1)%3+1
f(j,k)-f(k,j)
end
"""
curl(i,I,u)
Compute component `i` of ∇×u at the __edge__ of cell `I`.
For example `curl(3,CartesianIndex(2,2,2),u)` will compute
`ω₃(x=1.5,y=1.5,z=2)` as this edge produces the highest
accuracy for this mix of cross derivatives on a staggered grid.
"""
curl(i,I,u) = permute((j,k)->∂(j,CI(I,k),u), i)
"""
ω(I::CartesianIndex{3},u)
Compute 3-vector ω=∇×u at the center of cell `I`.
"""
ω(I::CartesianIndex{3},u) = [permute((j,k)->∂(k,j,I,u), i) for i ∈ 1:3]
"""
ω_mag(I::CartesianIndex{3},u)
Compute |ω| at the center of cell `I`.
"""
ω_mag(I::CartesianIndex{3},u) = norm2(ω(I,u))
"""
ω_θ(I::CartesianIndex{3},z,center,u)
Compute ω⋅θ at the center of cell `I` where θ is the azimuth
direction around vector `z` passing through `center`.
"""
function ω_θ(I::CartesianIndex{3},z,center,u)
θ = z × (loc(0,I)-center)
n = norm2(θ)
n<=eps(n) ? 0. : θ ⋅ ω(I,u) / n
end
"""
∮nds(p,body::AutoBody,t=0)
Surface normal integral of field `p` over the `body`.
"""
function ∮nds(p::Array{T,N},body::AutoBody,t=0) where {T,N}
s = zeros(SVector{N,T})
n = x -> ForwardDiff.gradient(y -> body.sdf(y,t), x)
for I ∈ inside(p)
x = loc(0,I)
d = body.sdf(x,t)::Float64
abs(d) ≤ 1 && (s += n(x).*p[I]*WaterLily.kern(d))
end
return s
end