-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_config.py
66 lines (51 loc) · 2.31 KB
/
model_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import segmentation_models_pytorch as smp
import torch
import torch.nn as nn
import albumentations as albu
class Infra_Config(object):
# Give the configuration a distinct name related to the experiment
NAME = None
# Set paths to data
# ROOT_DIR = r'/scratch/08968/eliasm1/infra'
ROOT_DIR = r'D:/infra-master'
WORKER_ROOT = ROOT_DIR + r'/data/'
INPUT_IMG_DIR = WORKER_ROOT + r'/256x256/imgs'
INPUT_MASK_DIR = WORKER_ROOT + r'/256x256/masks'
TEST_OUTPUT_DIR = ROOT_DIR + r'/test_output'
WEIGHT_PATH = ROOT_DIR + r'/model_weights/ls6_combined_weighted_2.pth'
# Configure model training
SIZE = 256
CHANNELS = 3
CLASSES = 10
ENCODER = 'resnet101'
ENCODER_WEIGHTS = 'imagenet'
ACTIVATION = 'softmax'
PREPROCESS = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
# Select model architecture in the following line
MODEL = smp.UnetPlusPlus(encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
in_channels=CHANNELS,
classes=CLASSES,
activation=ACTIVATION)
LOSS = nn.CrossEntropyLoss(weight=torch.tensor([0.12781573159926865,
16.36600579956361,
36.22309967411947,
2.510355072609063,
6.073441424661503,
1.8144220776412092,
2.8110502212966515,
1.6314143732757715,
7.742514444619097,
86.0577580953822]))
LOSS.__name__ = 'CrossEntropyLoss'
METRICS = [smp.utils.metrics.Fscore(threshold=0.5)]
OPTIMIZER = torch.optim.Adam([dict(params=MODEL.parameters(), lr=0.0001)])
DEVICE = 'cuda'
TRAIN_BATCH_SIZE = 16
VAL_BATCH_SIZE = 1
EPOCHS = 100
# Select augmentations
AUGMENTATIONS = [albu.Transpose(p=0.6),
albu.RandomRotate90(p=0.6),
albu.HorizontalFlip(p=0.6),
albu.VerticalFlip(p=0.6)]