-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfractal.py
59 lines (41 loc) · 1.18 KB
/
fractal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import colorsys
from PIL import Image
# setting up the image
WIDTH = 1024
HEIGHT = 768
# setting up the polynomial z^3 - 1
coeff = [1, 0, 0, -1]
poly = np.poly1d(coeff)
# calculate the roots of the polynomial
roots = np.roots(coeff)
tolerance = 1e-6
# set up the image
img = Image.new("RGB", (WIDTH, HEIGHT))
pixels = img.load()
def newton(x, y):
z = complex(x, y)
for iter in range(100):
polyz = poly(z)
polyderiv = poly.deriv()(z)
if polyderiv == 0:
break
z -= polyz / polyderiv
for root in roots:
if abs(root - z) < tolerance:
return point_to_rgb(iter)
return (0, 0, 0)
def point_to_rgb(i):
color = 255 * np.array(colorsys.hsv_to_rgb(i / 255.0, 1.0, 0.5))
return tuple(color.astype(int))
print("This is the polynomial we are using", poly)
print("These are the roots of the polynomial: ", roots)
real_range = (-2, 2)
imag_range = (-1.5, 1.5)
for x in range(WIDTH):
print("%.2f %%" % (x / WIDTH * 100.0))
for y in range(HEIGHT):
pixels[x, y] = newton(
(x - (0.75 * WIDTH)) / (WIDTH / 4), (y - (WIDTH / 4)) / (WIDTH / 4)
)
img.show()