-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathviterbi.py
369 lines (331 loc) · 15.2 KB
/
viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# -*- coding = utf-8 -*-
# Term Paper Project: Automatic Disambiguation in the Yiddish National Corpus <web-corpora.net/YNC/search/>
# 2013-2014
# Project Part: Viterbi Algorithm
# Author: Elmira Mustakimova <egmustakimova_2@edu.hse.ru>
# 2nd year student at HSE NRU Dept. of Linguistics Moscow
# Academic Advisor: Timofey Arkhangelskiy
from __future__ import division
__author__ = 'elmira'
import os
import codecs
from lxml import etree
from collections import defaultdict
#************************************#
# Disambiguation - Viterbi #
#************************************#
class HMM:
def __init__(self, path, extension='.xhtml', printing=False, ambig=True):
"""
Creates a Hidden Markov Model.
Starts the search.
path: unicode string containing the path to the directory where the corpus files are stored
extension: unicode string containing the ending of the filename, e.g. '.xhtml' or 'cheese.txt',
this helps to identify files that need to be searched
printing: True or False,
False by default,
if the value is True, all bigrams are printed to file *good_bigrams.txt*
ambig: True or False,
True by default, searches only non ambiguous unigrams and bigrams
if the value is False, assumes that the corpus is manually disambiguated and each word has correct tag
"""
self.states = defaultdict(int)
self.observations = defaultdict(int)
self.emissionProbabilities = defaultdict(dict)
self.transitionProbabilities = defaultdict(dict)
self.startProbabilities = defaultdict(int)
self.starts = 0
print 'Collecting statistics...'
if ambig:
count = 0
for root, dirs, files in os.walk(path):
for fName in files:
if fName.endswith(extension):
count += 1
self.search_file_ambig(os.path.join(root, fName))
if count % 300 == 0:
print "Processed %s files." % count
elif ambig is False:
count = 0
for root, dirs, files in os.walk(path):
for fName in files:
if fName.endswith(extension):
count += 1
self.search_file_not_ambig(os.path.join(root, fName))
if count % 100 == 0:
print "Processed %s files." % count
# print 'Good bigrams collected. Total: %s bigrams.\r\n' % (len(self.goodBigrs))
print 'Collected %s tags' % len(self.states)
print 'Collected %s words' % len(self.observations)
print 'Collecting emission and transition probabilities...'
self.collect_emission()
self.collect_transition()
self.collect_start()
if printing:
self.printing()
def search_file_ambig(self, fName):
"""
Performs the search of good bigrams in a given file fName.
Writes the result to the array goodBigrs.
"""
# try:
root = etree.parse(fName).getroot()
for se in root[1]:
for w in range(len(se) - 1):
curWord = [ana for ana in se[w] if "lex" in ana.attrib]
curWord1 = [ana for ana in se[w]]
curW = curWord1[-1].tail
self.observations[curW] += 1
curResult = False
if curWord != []:
curPoS = set([x.attrib["gr"].split(u',')[0] for x in curWord])
if (curPoS == {"V", "ADV"} or curPoS == {"PREP", "PRON"} or curPoS == {"V", "PRON"}) and len(
curWord) == 2: # treating special cases right
curResult = True
if len(curWord) == 1 or curResult:
try:
curT = curWord[-1].attrib["gr"]
if curT != '':
self.states[curT] += 1
try:
self.emissionProbabilities[curT][curW] += 1
except KeyError:
self.emissionProbabilities[curT][curW] = 1
except KeyError:
pass
nextWord = [ana for ana in se[w + 1] if
"lex" in ana.attrib] # not counting empty tags
nextWord1 = [ana for ana in se[w + 1]]
nextW = nextWord1[-1].tail
if w == len(se) - 1:
self.observations[nextW] += 1
nextResult = False
if nextWord != []:
nextPoS = set([x.attrib["gr"].split(u',')[0] for x in nextWord])
if (nextPoS == {"V", "ADV"} or nextPoS == {"PREP", "PRON"} or nextPoS == {"V", "PRON"}) and len(
nextWord) == 2:
nextResult = True
if len(nextWord) == 1 or nextResult:
nextT = nextWord[-1].attrib["gr"]
if w == len(se) - 1:
if nextT != '':
self.states[nextT] += 1
try:
if (len(nextWord) == 1 or nextResult) and nextT != '' and curT != '':
if len(curWord) == 1 or curResult:
try:
self.transitionProbabilities[curT][nextT] += 1
except KeyError:
self.transitionProbabilities[curT][nextT] = 1
except UnboundLocalError:
pass
# except:
# print "Class - HMM; function - search_file_ambig(filename); fail at %s" % fName
def search_file_not_ambig(self, fName):
"""
Performs the search of good bigrams in a given file fName.
Writes the result to the array goodBigrs.
"""
# try:
root = etree.parse(fName).getroot()
for se in root[1]:
for w in range(len(se) - 1):
curWord = [ana for ana in se[w] if "lex" in ana.attrib]
if curWord != []:
curW = curWord[-1].tail
self.observations[curW] += 1
try:
curT = curWord[-1].attrib["gr"]
if curT != '':
self.states[curT] += 1
try:
self.emissionProbabilities[curT][curW] += 1
except KeyError:
self.emissionProbabilities[curT][curW] = 1
except:
pass
nextWord = [ana for ana in se[w + 1] if
"lex" in ana.attrib] # not counting empty tags
if nextWord != []:
nextW = nextWord[-1].tail
nextT = nextWord[-1].attrib["gr"]
if w == len(se) - 1:
self.observations[nextW] += 1
if nextT != '':
self.states[nextT] += 1
if nextWord != [] and curWord != [] and nextT != '' and curT != '':
try:
self.transitionProbabilities[curT][nextT] += 1
except KeyError:
self.transitionProbabilities[curT][nextT] = 1
# except:
# print "Class - HMM; function - search_file_ambig(filename); fail at %s" % fName
def collect_emission(self):
'''
Turns the values in the dictionary into probabilities.
Simply divides each value by the frequency of the corresponding tag.
'''
print "Collect emission probabilities B..."
count = 0
for state in self.states:
if state not in self.emissionProbabilities:
self.emissionProbabilities[state] = {}
for i in self.emissionProbabilities[state]:
self.emissionProbabilities[state][i] += 1
self.emissionProbabilities[state][i] /= (self.states[state] + len(self.observations.keys()))
def collect_transition(self):
'''
Turns the values in the dictionary into probabilities.
Simply divides each value by the frequency of the corresponding tag.
'''
print "Collect transition probabilities A..."
for state in self.states:
if state not in self.transitionProbabilities:
self.transitionProbabilities[state] = {}
for i in self.transitionProbabilities[state]:
self.transitionProbabilities[state][i] += 1
self.transitionProbabilities[state][i] /= (self.states[state] + len(self.states.keys()))
def collect_start(self):
'''
Turns the values in the dictionary into probabilities.
Simply divides each value by the frequency of the corresponding tag.
'''
print "Collect start probabilities Q..."
if self.startProbabilities == {}:
for tag in self.states:
self.startProbabilities[tag] = 1/len(self.states)
else:
for tag in self.startProbabilities:
self.startProbabilities[tag] /= self.starts
def printing(self):
print "Printing data to file..."
f = codecs.open(u"printing_states.txt", "w", "utf-8")
for key in self.states:
f.write(key + '\r\n')
f.close()
f = codecs.open(u"printing_starts.txt", "w", "utf-8")
for key in self.startProbabilities:
f.write(key + ' ' + str(self.startProbabilities[key]) + '\r\n')
f.close()
f = codecs.open(u"printing_observations.txt", "w", "utf-8")
out = '\r\n'.join(self.observations.keys())
f.write(out)
f.close()
f = codecs.open(u"printing_emission.txt", "w", "utf-8")
for k in self.emissionProbabilities:
f.write(k + '\r\n')
for w in reversed(
sorted(self.emissionProbabilities[k].keys(), key=lambda c: self.emissionProbabilities[k][c])):
f.write('ooo> ' + str(self.emissionProbabilities[k][w]) + ' ' + w + '\r\n')
f.close()
f = codecs.open(u"printing_transition.txt", "w", "utf-8")
for k in self.transitionProbabilities:
f.write(k + '\r\n')
for w in reversed(
sorted(self.transitionProbabilities[k].keys(), key=lambda c: self.transitionProbabilities[k][c])):
f.write(' ' + str(self.transitionProbabilities[k][w]) + ' ' + w + '\r\n')
f.close()
class ViterbiTrainer:
def __init__(self, hmm, path, extension='.xhtml'):
print "Run Viterbi Algorithm."
self.states = hmm.states.keys()
self.states2 = hmm.states
self.trans_p = hmm.transitionProbabilities
self.emit_p = hmm.emissionProbabilities
self.start_p = hmm.startProbabilities
self.observ = hmm.observations.keys()
self.changes = 0
count = 0
for root, dirs, files in os.walk(path):
for fName in files:
if fName.endswith(extension):
count += 1
self.find_sents(os.path.join(root, fName))
print "Applied ViterbiTrainer to %s, %s files." % (os.path.join(root, fName), count)
def find_sents(self, f):
changes = 0
root = etree.parse(f).getroot()
f2 = codecs.open(u'res2.txt', 'a', 'utf-8')
for se in root[1]:
sentWords = []
sent = []
for w in range(len(se)):
curWord = [ana for ana in se[w]]
curW = curWord[-1].tail
sentWords.append([(ana.attrib['gr'], ana) for ana in se[w]
if 'gr' in ana.attrib and ana.attrib['gr'] != ''])
sent.append(curW)
tags = self.viterbi(sent) # found most probable sequence of tags
k = zip(sent, tags)
sentWords = self.delete_bad_tags(k, sentWords)
for c in xrange(len(sent)):
if c in sentWords:
if sentWords[c] != []:
for i in xrange(len(se[c])): # ==for ana in word:
se[c].remove(se[c][0]) # deleted all ana from the tree
# print len(sentWords[c])
for e in sentWords[c]:
se[c].append(e)
se[c][-1].tail = sent[c]
changes += 1
for (a, b) in k:
f2.write(a + ' : ' + b + '\r\n')
f2.write(u'***********************************************************\r\n')
out = etree.tostring(root, pretty_print=True, encoding=unicode)
f2.close()
fOut = codecs.open(f, 'w', 'utf-8')
fOut.write(out)
fOut.close()
self.changes += changes
print "Made %s changes. Total: %s changes." % (changes, self.changes)
def delete_bad_tags(self, k, sentWords):
for a in range(len(k)):
obs, tag = k[a]
if sentWords[a] != []:
for gr, ana in sentWords[a]:
if gr != tag:
gr = 'bad'
d = {}
for e in range(len(sentWords)):
if sentWords[e] != []:
for p in range(len(sentWords[e])):
if sentWords[e][p][0] != 'bad':
sentWords[e][p][1].tail = None
if e in d:
d[e].append(sentWords[e][p][1])
else:
d[e] = [sentWords[e][p][1]]
return d
def viterbi(self, obs):
V = [{}]
path = {}
d = {}
for y in self.states:
if obs[0] not in self.emit_p[y]:
self.emit_p[y][obs[0]] = 1 / (self.states2[y] + len(self.observ))
d[y] = (self.start_p[y] * self.emit_p[y][obs[0]])
V = [d]
path = {y:[y] for y in self.states}
for t in range(1, len(obs)):
V.append({})
newpath = {}
for y in self.states:
ar = []
for y0 in self.states:
if obs[t] not in self.emit_p[y]:
self.emit_p[y][obs[t]] = 1 / (self.states2[y] + len(self.observ))
if y not in self.trans_p[y0]:
self.trans_p[y0][y] = 1 / (self.states2[y] + len(self.states))
ar.append((V[t - 1][y0] * self.trans_p[y0][y] * self.emit_p[y][obs[t]], y0))
(prob, state) = max(ar)
V[t][y] = prob
newpath[y] = path[state] + [y]
path = newpath
n = 0
if len(obs) != 1:
n = t
(prob, state) = max((V[n][y], y) for y in self.states)
return path[state]
m = HMM('C:\\Users\\asus\\PycharmProjects\\yiddish\\yiddish_parsed_cases', printing=True, ambig=True)
p = 'C:\\Users\\asus\\PycharmProjects\\yiddish\\yiddish_parsed_cases_run_viterbi'
v = ViterbiTrainer(m, p)