-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathgenerate.py
96 lines (79 loc) · 3.3 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (C) 2019 Elvis Yu-Jing Lin <elvisyjlin@gmail.com>
#
# This work is licensed under the MIT License. To view a copy of this license,
# visit https://opensource.org/licenses/MIT.
"""Generate images from trained models"""
import argparse
import json
import os
from os import listdir
from os.path import join
from tqdm import tqdm
import torch
import torch.utils.data as data
import torchvision.utils as vutils
from data import CelebA
from sagan import Generator
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', type=str, default=argparse.SUPPRESS)
parser.add_argument('--attr-path', type=str, default=argparse.SUPPRESS)
parser.add_argument('--batch-size', type=int, default=argparse.SUPPRESS)
parser.add_argument('--test-nimg', type=int, default=None)
parser.add_argument('--experiment-name', type=str, required=True)
parser.add_argument('--gpu', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
# Arguments
args = parse()
print(args)
# Load training setting
with open(join('results', args.experiment_name, 'setting.json'), 'r', encoding='utf-8') as f:
setting = json.load(f)
for key, value in vars(args).items():
setting[key] = value
args = argparse.Namespace(**setting)
print(args)
# Device
device = torch.device('cuda') if args.gpu and torch.cuda.is_available() else torch.device('cpu')
# Paths
checkpoint_path = join('results', args.experiment_name, 'checkpoint')
test_path = join('results', args.experiment_name, 'test')
os.makedirs(test_path, exist_ok=True)
# Data
selected_attrs = [args.target_attr]
test_dset = CelebA(args.data_path, args.attr_path, args.image_size, 'test', selected_attrs)
test_data = data.DataLoader(test_dset, args.batch_size)
# Model
G = Generator()
G.to(device)
# Load from checkpoints
load_nimg = args.test_nimg
if load_nimg is None: # Use the lastest model
load_nimg = max(int(path.split('.')[0]) for path in listdir(join(checkpoint_path)) if path.split('.')[0].isdigit())
print('Loading generator from nimg {:07d}'.format(load_nimg))
G.load_state_dict(torch.load(
join(checkpoint_path, '{:07d}.G.pth'.format(load_nimg)),
map_location=lambda storage, loc: storage
))
G.eval()
with torch.no_grad():
for batch_idx, (reals, labels) in enumerate(tqdm(test_data)):
reals, labels = reals.to(device), labels.type_as(reals).to(device)
target_labels = 1 - labels
# Modify images
samples, masks = G(reals, target_labels)
# Put images together
masks = masks.repeat(1, 3, 1, 1) * 2 - 1
images_out = torch.stack((reals, samples, masks)) # 3, N, 3, S, S
images_out = images_out.transpose(0, 1) # N, 3, 3, S, S
# Save images separately
for idx, image_out in enumerate(images_out):
vutils.save_image(
image_out,
join(test_path, '{:06d}.jpg'.format(batch_idx*args.batch_size+idx+200000)),
nrow=3,
padding=0,
normalize=True,
range=(-1.,1.)
)