-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLog_Likelihood.py
49 lines (38 loc) · 1.47 KB
/
Log_Likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 19 23:06:46 2020
@author: emadg
"""
import numpy as np
from scipy.signal import lfilter
from scipy.interpolate import griddata
import alphashape
from Alpha_shape_mask import Alpha_shape_mask
# from profile_each_line import profile_each_line
#import math
# @profile_each_line
def Log_Likelihood(Kernel_Grv,Kernel_Mag,dg_obs,dT_obs,x,z,rho,alpha,ARg,ART,XnZn):
TrainPoints = np.column_stack((x,z)).copy()
grid_model = griddata(TrainPoints, rho, (XnZn[:,0], XnZn[:,1]), method='linear', fill_value=0)
hull = alphashape.alphashape(TrainPoints,alpha)
DensityModel = Alpha_shape_mask(grid_model,hull,XnZn)
rg = dg_obs - (Kernel_Grv @ DensityModel)
SusModel = DensityModel/50.
SusModel[DensityModel<0.2]=0
rT = dT_obs - (Kernel_Mag @ SusModel) #(nT)
N = len(rg)
SqN = np.sqrt(N)
#sigma_g = np.linalg.norm(rg)/SqN
#sigma_T = np.linalg.norm(rT)/SqN
Arg = np.insert(ARg,0,0).copy()
da_g = lfilter(Arg , 1, rg)
ArT = np.insert(ART,0,0).copy()
da_T = lfilter(ArT , 1, rT)
uncor_g = rg-da_g
uncor_T = rT-da_T
sigma_rg = np.linalg.norm(rg)/SqN
sigma_rT = np.linalg.norm(rT)/SqN
if sigma_rg<0.1: sigma_rg = 0.1
if sigma_rT<0.1: sigma_rT = 0.1
LogL = -N*np.log(sigma_rg*sigma_rT) - (0.5*np.sum((uncor_g/sigma_rg)**2)) - (0.5*np.sum((uncor_T/sigma_rT)**2))
return LogL, DensityModel, SusModel, rg, rT, sigma_rg, sigma_rT, uncor_g, uncor_T