-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathspm_logdet.m
75 lines (59 loc) · 2.51 KB
/
spm_logdet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function H = spm_logdet(C)
% Compute the log of the determinant of positive (semi-)definite matrix C
% FORMAT H = spm_logdet(C)
% H = log(det(C))
%
% spm_logdet is a computationally efficient operator that can deal with
% full or sparse matrices. For non-positive definite cases, the determinant
% is considered to be the product of the positive singular values.
%__________________________________________________________________________
% Copyright (C) 2004-2020 Wellcome Centre for Human Neuroimaging
% Karl Friston and Ged Ridgway
% $Id: spm_logdet.m 7975 2020-10-06 14:46:56Z spm $
# SPDX-License-Identifier: GPL-2.0
% Note that whether sparse or full, rank deficient cases are handled in the
% same way as in spm_logdet revision 4068, using svd on a full version of C
% remove null variances
%--------------------------------------------------------------------------
i = find(diag(C));
C = C(i,i);
[i,j,s] = find(C);
if any(isnan(s)), H = nan; return; end
% TOL = max(size(C)) * eps(max(s)); % as in MATLAB's rank function
%--------------------------------------------------------------------------
TOL = 1e-16;
if any(i ~= j)
% assymetric matrix
%------------------------------------------------------------------
if norm(spm_vec(C - C'),inf) > TOL
s = svd(full(C));
else
% non-diagonal sparse matrix
%------------------------------------------------------------------
if issparse(C)
% Note p is unused but requesting it can make L sparser
%--------------------------------------------------------------
[L,nondef,p] = chol(C, 'lower', 'vector');
if ~nondef
% pos. def. with Cholesky decomp L, and det(C) = det(L)^2
%----------------------------------------------------------
H = 2*sum(log(full(diag(L))));
return
end
s = svd(full(C));
else
% non-diagonal full matrix
%--------------------------------------------------------------
try
R = chol(C);
H = 2*sum(log(diag(R)));
return
catch
s = svd(C);
end
end
end
end
% if still here, singular values in s (diagonal values as a special case)
%--------------------------------------------------------------------------
H = sum(log(s(s > TOL & s < 1/TOL)));