-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdviplusim.m
1044 lines (840 loc) · 33.5 KB
/
dviplusim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function dviplusim(fileFolderName, outFolder)
%DVIPLUSIM Creates DVI Plus image for SIM2 HDR47 screen.
% DVIPLUSIM(FILEFOLDERNAME) Creates DVI Plus image and writes three
% images as output:
% * a PNG image, which is used to show the image in DVI+ mode
% * an EXR image with estimated emitted luminance information
% * an EXR image with estimated backlight luminance information
% The function requires FILEFOLDERNAME as input. This input can both
% be a file or directory.
%
% Examples:
% dviplusim('hdrImages\cloudyDay.hdr');
% dviplusim('hdrImages\cloudyDay.hdr', 'outFolder');
% dviplusim([hdrPath filesep 'hdrImagesFolder'], 'outFolder');
%
% Check the following paper for details:
% E. Zerman, G. Valenzise, and F. Dufaux, "A Dual Modulation Algorithm
% for Accurate Reproduction of High Dynamic Range Video", IEEE 12th
% Image, Video, and Multidimensional Signal Processing Workshop (IVMSP),
% Bordeaux, France, July 2016.
%
% ---------------------
% - Emin Zerman / emin.zerman@telecom-paristech.fr
% - Created: 23/03/2015 -- Updated: 16/09/2015
% - Telecom ParisTech - TSI - MM
% ---------------------
% Copyright (C) 2018 - Emin Zerman
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% ------------------------------------
% Check if flags exist and initialize
if(~exist('outFolder', 'var')),
outFolder ='dvipOut';
% Create outFolder either in target folder or code directory
if isdir(fileFolderName)
if ~isdir([fileFolderName filesep outFolder])
mkdir([fileFolderName filesep outFolder]);
end
outFolder = [fileFolderName filesep outFolder];
else
if ~isdir(outFolder)
mkdir(outFolder);
end
end
else
if ~isdir(outFolder)
mkdir(outFolder);
end
end
Params.outFolder = outFolder;
Params.fileFolderName = fileFolderName;
% CONSTANT values
Params.LED_MAX_LUM = 180;
Params.LUMINANCE_HDR_CONSTANT = 179;
Params.MAX_LUMINANCE = 4250;
Params.EXTRAPOLATE_MARGIN = 80;
Params.LCD_LEAKAGE_CONSTANT = 1/0.005;
Params.fileFlag = 0;
% Get point spread function, resize PSF to reduce complexity
load('led_psf.mat');
Params.led_psf = led_psf;
clear led_psf;
%Params.led_psf = lum(hdrimread('psf_model.pfm'));
Params.led_psfSm = imresize(Params.led_psf, 1/4);
% Find locations of LEDs, resize LED maps to reduce complexity
[~, Params.ledLabels, Params.ledIndices] = findledpositions([1080 1920], 0);
[Params.ledMapSm, Params.ledLabelsSm, Params.ledIndicesSm] = findledpositions([1080 1920]/4, 0);
% Check if the first input is a file name or folder name
[Params, DbContents] = determineFileFolder(Params);
%% Process the indicated image or all images in the indicated folder
for imNo = Params.fileIndices
% Find fileName for naming
if Params.fileFlag
[~, Ims.fileName, Ims.fileXt] = fileparts(Params.fileFolderName);
else
[~, Ims.fileName, Ims.fileXt] = fileparts(DbContents(imNo).name);
end
%% Acquire Image
% Acquire HDR image by utilizing Matlab's hdrread function, and tonemap
% function for user to see the image.
[Ims, rFlag] = readHdrIm(DbContents(imNo).name, Params, Ims);
if rFlag == 1
continue;
end
%% Find desired backlight
Ims = desiredBacklight(Params, Ims);
%% Find LED values
Ims = findLedValues(Params, Ims);
%% Finding LCD values
% After LED values and backlight illumination caused by LEDs have been
% found, calculate and set LCD values for DVI Plus image.
Ims = findLcdValues(Params, Ims);
%% Save DVI+ output image
% Save DVI+ Image
getdviplusim(round(255*Ims.ledVals)',uint8(Ims.lcdGamCorrdUint8),...
[Params.outFolder filesep Ims.fileName '.png']);
% Find the reconstructed HDR image
[dvipHdr, ledLum3d] = dviplus2hdrim(round(255*Ims.ledVals)',...
uint8(Ims.lcdGamCorrdUint8), Params.led_psf);
exrwrite(dvipHdr, [Params.outFolder filesep 'lum_' Ims.fileName '.exr' ]);
exrwrite(ledLum3d, [Params.outFolder filesep 'ledLum_' Ims.fileName '.exr' ]);
end
end
function [Params, DbContents] = determineFileFolder(Params)
if ~isempty(strfind(Params.fileFolderName(end-4:end),'.hdr')) || ...
~isempty(strfind(Params.fileFolderName(end-4:end),'.exr'))
% ========== It is an HDR or EXR file ==========
Params.fileFlag = 1;
Params.fileIndices = 1;
DbContents.name = Params.fileFolderName;
elseif isdir(Params.fileFolderName)
% ========== It is a folder ==========
Params.fileFlag = 0;
% Find folder contents
countHdrFiles = length(dir([Params.fileFolderName '\*.hdr']));
countExrFiles = length(dir([Params.fileFolderName '\*.exr']));
if countHdrFiles == 0 && countExrFiles == 0
error('No .hdr or .ext files present in specified path!');
else
if countHdrFiles > countExrFiles
% Read HDR
DbContents = dir([Params.fileFolderName '\*.hdr']);
else
%Read EXR
DbContents = dir([Params.fileFolderName '\*.exr']);
end
end
Params.fileIndices = 1:length(DbContents);
else
error('This is not an HDR image file or a folder!');
end
end
function [Ims, rFlag] = readHdrIm(imName, Params, Ims)
rFlag = 0;
if Params.fileFlag
if strcmp(Ims.fileXt,'.hdr')
try
hdrIm = hdrread(imName);
catch
try
hdrIm = hdrimread(imName);
catch
error('Problem acquiring the HDR image/frame!!');
end
end
elseif strcmp(Ims.fileXt,'.exr')
hdrIm = exrread(imName);
elseif strcmp(Ims.fileXt,'.pfm')
hdrIm = hdrimread(imName);
else
rFlag = 1;
end
else
if strcmp(Ims.fileXt,'.hdr')
try
hdrIm = hdrread([Params.fileFolderName filesep imName]);
catch
try
hdrIm = hdrimread([Params.fileFolderName filesep imName]);
catch
error('Problem acquiring the HDR image/frame!!');
end
end
elseif strcmp(Ims.fileXt,'.exr')
hdrIm = exrread([Params.fileFolderName filesep imName]);
elseif strcmp(Ims.fileXt,'.pfm')
hdrIm = hdrimread([Params.fileFolderName filesep imName]);
else
rFlag = 1;
end
end
% Adjust image to be 1920/1080 by resizing and/or padding with black
[Ims.hdrIm, Ims.lastIm] = makeitfullhd(hdrIm);
% Find target luminance, multiply w/ constant if ".hdr"
if strcmp(Ims.fileXt,'.hdr')
hdrImL = Ims.hdrIm*Params.LUMINANCE_HDR_CONSTANT;
%lastImL = Ims.lastIm*Params.LUMINANCE_HDR_CONSTANT;
elseif strcmp(Ims.fileXt,'.exr')
hdrImL = Ims.hdrIm;
%lastImL = Ims.lastIm;
end
hdrLum = max(hdrImL, [], 3);
if max(max(hdrLum))>Params.MAX_LUMINANCE,
hdrLum(hdrLum>Params.MAX_LUMINANCE) = Params.MAX_LUMINANCE;
end
Ims.hdrLum = hdrLum;
end
function [hdrIm, lastIm, typeFlag, diff] = makeitfullhd(hdrIm)
ratioHD = 1920/1080;
ratioIm = size(hdrIm,2)/size(hdrIm,1);
if (ratioHD == ratioIm) && (size(hdrIm,2) ~= 1920)
% Same resolution with different aspect ratio
hdrIm = imresize(hdrIm, [1080 1920]);
hdrIm(hdrIm<0) = 0; % Avoid having negative values
lastIm = hdrIm;
typeFlag = 1; % Type 1: Same resolution w/ diff. aspect ratio
diff = 0;
elseif (ratioHD == ratioIm) && (size(hdrIm,2) == 1920)
% Same resolution
lastIm = hdrIm;
typeFlag = 2; % Type 2: Same resolution
diff = 0;
elseif (ratioHD > ratioIm)
% Different ratio, resize the image
tempIm = imresize(hdrIm, [1080 ratioIm*1080]);
tempIm(tempIm<0) = 0; % Avoid having negative values
% Find the difference between 1920 and the column pixels
diff = 1920 - size(tempIm,2);
lastIm = zeros(1080,1920,size(tempIm,3));
lastIm(:,floor(diff/2)+1:(floor(diff/2)+size(tempIm,2)),:) = tempIm;
hdrIm = lastIm; % lastIm is the black padded image
hdrIm(:,1:floor(diff/2),:) = repmat(hdrIm(:,floor(diff/2)+1,:), [1 floor(diff/2) 1]);
hdrIm(:,(floor(diff/2)+size(tempIm,2))+1:end,:) = repmat(hdrIm(:,(floor(diff/2)+size(tempIm,2)),:), [1 diff-floor(diff/2) 1]);
typeFlag = 3; % Type 3: Diff ratio, tight frame
elseif (ratioHD < ratioIm)
% Different ratio, resize the image
tempIm = imresize(hdrIm, [1920/ratioIm 1920]);
tempIm(tempIm<0) = 0; % Avoid having negative values
% Find the difference between 1080 and the row pixels
diff = 1080 - size(tempIm,1);
lastIm = zeros(1080,1920,size(tempIm,3));
lastIm(floor(diff/2)+1:(floor(diff/2)+size(tempIm,1)),:,:) = tempIm;
hdrIm = lastIm; % lastIm is the black padded image
hdrIm(1:floor(diff/2),:,:) = repmat(hdrIm(floor(diff/2)+1,:,:), [floor(diff/2) 1 1]);
hdrIm((floor(diff/2)+size(tempIm,1))+1:end,:,:) = repmat(hdrIm((floor(diff/2)+size(tempIm,1)),:,:), [diff-floor(diff/2) 1 1]);
typeFlag = 4; % Type 4: Diff ratio, wide frame
else
error('Something wrong with the spatial resolution!!');
end
end
function [ledImage, ledLabels, ledIndices, ledPos] = findledpositions(imSize, debugFlag)
if size(imSize)<2, error('Wrong imsize!'); end
if(~exist('debugFlag', 'var')), debugFlag = 0; end
%% Determine the locations of LEDs
% Since LEDs of SIM2 HDR47S4 display is put in a hexagonal order, the odd
% and even rows have different distance values from the edge of the screen.
% The calculations below find the positions of LEDs from origin, and they
% can be used for plotting.
dispXOdd = 0.64:17.6:(17.6*59+0.64*2);
dispXEven = (0.64+17.6/2):17.6:(17.6*58+0.64*2+17.6);
dispYOdd = -8.01:-31.6:-(31.6*18+8.01*2);
dispYEven = -(8.01+31.6/2):-31.6:-(31.6*17+8.01*2+31.6);
% scale if necessary (i.e. if resolution is different - N/A for SIM2)
scale = 1080/imSize(1);
dispXOdd = dispXOdd/scale;
dispXEven = dispXEven/scale;
dispYOdd = dispYOdd/scale;
dispYEven = dispYEven/scale;
% Create a grid for odd and even rows
[ledsOddY, ledsOddX] = meshgrid(dispYOdd, dispXOdd);
ledsOddX = reshape(ledsOddX, [], 1);
ledsOddY = reshape(ledsOddY, [], 1);
[ledsEvenY, ledsEvenX] = meshgrid(dispYEven, dispXEven);
ledsEvenX = reshape(ledsEvenX, [], 1);
ledsEvenY = reshape(ledsEvenY, [], 1);
% Find LED positions by alternately concatanating odd and even rows
ledPosX = [];
ledPosY = [];
for ind = 1:37
if mod(ind,2)==1
ledPosX = cat(1, ledPosX, ledsOddX((ceil(ind/2)-1)*60+1:ceil(ind/2)*60));
ledPosY = cat(1, ledPosY, ledsOddY((ceil(ind/2)-1)*60+1:ceil(ind/2)*60));
else
ledPosX = cat(1, ledPosX, ledsEvenX((ceil(ind/2)-1)*59+1:ceil(ind/2)*59));
ledPosY = cat(1, ledPosY, ledsEvenY((ceil(ind/2)-1)*59+1:ceil(ind/2)*59));
end
end
ledPos = [ledPosX ledPosY (1:2202)'];
if debugFlag, figure, plot(ledPosX, ledPosY, 'r*'); axis equal, axis([0 1039.68 -584.82 0]); end;
if debugFlag, figure, voronoi(ledPosX, ledPosY); axis equal, axis([0 1039.68 -584.82 0]); end;
%% LEDs Pixel Positions
% In order to handle other image related operations, LED pixel locations
% have to be known. Hence, pixel locations are estimated considering the
% true locations of LEDs which is found above.
tempLedImage = zeros(imSize(1:2));
tempLedLabels = zeros(imSize(1:2));
% Find row and col pixels
pixRows = ceil(ledPos(:,2)/-0.5415);
pixCols = ceil(ledPos(:,1)/0.5415);
ledIndices = sub2ind(imSize(1:2), pixRows, pixCols);
% Assign values
tempLedImage(ledIndices) = 1;
tempLedLabels(ledIndices) = ledPos(:,3);
if debugFlag, figure, imshow(tempLedImage); end;
if debugFlag, figure, imagesc(tempLedLabels); end;
%% Output
ledImage = tempLedImage;
ledLabels = tempLedLabels;
end
function Ims = desiredBacklight(Params, Ims)
% Extrapolate (by inpainting) the image to avoid information loss
% while filtering. Downsample the hdrLum by 4 to reduce complexity.
hdrLumBar = zeros( (Params.EXTRAPOLATE_MARGIN+1080)/4,...
(Params.EXTRAPOLATE_MARGIN+1920)/4 );
hdrLumBar(:) = NaN;
hdrLumBar(Params.EXTRAPOLATE_MARGIN/8 +1 : 1080/4 +Params.EXTRAPOLATE_MARGIN/8,...
Params.EXTRAPOLATE_MARGIN/8 +1 : 1920/4 +Params.EXTRAPOLATE_MARGIN/8) ...
= imresize(Ims.hdrLum, 1/4);
hdrLumBarN = inpaintn(hdrLumBar);
hdrLumExtp = imresize(hdrLumBarN, 4);
hdrLumExtp(Params.EXTRAPOLATE_MARGIN/2 +1 : 1080 +Params.EXTRAPOLATE_MARGIN/2,...
Params.EXTRAPOLATE_MARGIN/2 +1 : 1920 +Params.EXTRAPOLATE_MARGIN/2) ...
= Ims.hdrLum;
% -- Find Target Luminance value --
% Find the minimum required luminance for fidelity by filtering the max
% value image with a Gaussian filter (i.e. fspecial('disk',N) )
maxValImg = imdilate(hdrLumExtp*1.1, strel('disk', 30));
targetLumMin = conv2(maxValImg, fspecial('disk',30),'same');
% Find the maximum allowed luminance to avoid any LCD leakage and light
% halos that may occur. Median filter in order to reduce the artifacts
% created due to the high frequency characteristics (e.g. stars, pixel
% defects caused during image acquisition, etc.)
targetLumMax = hdrLumExtp*Params.LCD_LEAKAGE_CONSTANT;
targetLumMax(targetLumMax>Params.MAX_LUMINANCE) = Params.MAX_LUMINANCE;
targetLumMax = medfilt2(targetLumMax, [5 5]);
% Find the minumum value (or the constraining value) of these minumum
% and maximum images.
tempArr = cat(3, targetLumMin, targetLumMax);
targetLum_pre = min(tempArr, [], 3);
% Smooth out the preliminary result to avoid direct faults of
% individual LEDs. Median filter in order to reduce the artifacts
% created due to the high frequency characteristics (e.g. stars, pixel
% defects caused during image acquisition, etc.)
targetLum_filt = imfilter(targetLum_pre, fspecial('disk', Params.EXTRAPOLATE_MARGIN));
targetLum_temp = targetLum_filt(Params.EXTRAPOLATE_MARGIN/2 +1 : 1080 +Params.EXTRAPOLATE_MARGIN/2,...
Params.EXTRAPOLATE_MARGIN/2 +1 : 1920 +Params.EXTRAPOLATE_MARGIN/2);
targetLum = medfilt2(max(Ims.hdrLum,targetLum_temp), [5 5]);
targetLum(targetLum==0) = targetLum_temp(targetLum==0);
targetLumSm = imresize(targetLum, 1/4);
targetLumSm(targetLumSm < 0) = 0;
% Pass the pictures
Ims.targetLum = targetLum;
Ims.targetLumSm = targetLumSm;
end
function y = inpaintn(x,n,y0,m)
if nargin==0&&nargout==0, RunTheExample, return, end
x = double(x);
if nargin==1 || isempty(n), n = 100; end
sizx = size(x);
d = ndims(x);
Lambda = zeros(sizx);
for i = 1:d
siz0 = ones(1,d);
siz0(i) = sizx(i);
Lambda = bsxfun(@plus,Lambda,...
cos(pi*(reshape(1:sizx(i),siz0)-1)/sizx(i)));
end
Lambda = 2*(d-Lambda);
% Initial condition
W = isfinite(x);
if nargin==3 && ~isempty(y0)
y = y0;
s0 = 3; % note: s = 10^s0
else
if any(~W(:))
[y,s0] = InitialGuess(x,isfinite(x));
else
y = x;
return
end
end
x(~W) = 0;
if isempty(n) || n<=0, n = 100; end
% Smoothness parameters: from high to negligible values
s = logspace(s0,-6,n);
RF = 2; % relaxation factor
if nargin<4 || isempty(m), m = 2; end
Lambda = Lambda.^m;
% h = waitbar(0,'Inpainting...');
for i = 1:n
Gamma = 1./(1+s(i)*Lambda);
y = RF*idctn(Gamma.*dctn(W.*(x-y)+y)) + (1-RF)*y;
% waitbar(i/n,h)
end
% close(h)
y(W) = x(W);
end
%% Initial Guess
function [z,s0] = InitialGuess(y,I)
if license('test','image_toolbox')
%-- nearest neighbor interpolation
[~,L] = bwdist(I);
z = y;
z(~I) = y(L(~I));
s0 = 3; % note: s = 10^s0
else
warning('MATLAB:inpaintn:InitialGuess',...
['BWDIST (Image Processing Toolbox) does not exist. ',...
'The initial guess may not be optimal; additional',...
' iterations can thus be required to ensure complete',...
' convergence. Increase N value if necessary.'])
z = y;
z(~I) = mean(y(I));
s0 = 6; % note: s = 10^s0
end
end
%% Example (3-D)
function RunTheExample
load wind
xmin = min(x(:)); xmax = max(x(:)); %#ok
zmin = min(z(:)); ymax = max(y(:)); %#ok
%-- wind velocity
vel0 = interp3(sqrt(u.^2+v.^2+w.^2),1,'cubic');
x = interp3(x,1); y = interp3(y,1); z = interp3(z,1);
%-- remove randomly 90% of the data
I = randperm(numel(vel0));
velNaN = vel0;
velNaN(I(1:round(numel(I)*.9))) = NaN;
%-- inpaint using INPAINTN
vel = inpaintn(velNaN);
%-- display the results
subplot(221), imagesc(velNaN(:,:,15)), axis equal off
title('Corrupt plane, z = 15')
subplot(222), imagesc(vel(:,:,15)), axis equal off
title('Reconstructed plane, z = 15')
subplot(223)
hsurfaces = slice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hcont = contourslice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin);
set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5)
view(3), daspect([2,2,1]), axis tight
title('Actual data compared with...')
subplot(224)
hsurfaces = slice(x,y,z,vel,[xmin,100,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hcont = contourslice(x,y,z,vel,[xmin,100,xmax],ymax,zmin);
set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5)
view(3), daspect([2,2,1]), axis tight
title('... reconstructed data')
end
%% DCTN
function y = dctn(y)
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1, y = y.'; end
end
% Weighting vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- DCT algorithm ---
if ~isreal(y)
y = complex(dctn(real(y)),dctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = y([1:2:n 2*floor(n/2):-2:2],:);
y = reshape(y,n,[]);
y = y*sqrt(2*n);
y = ifft(y,[],1);
y = bsxfun(@times,y,w{dim});
y = real(y);
y(1,:) = y(1,:)/sqrt(2);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
%% IDCTN
function y = idctn(y)
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1
y = y.';
end
end
% Weighing vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- IDCT algorithm ---
if ~isreal(y)
y = complex(idctn(real(y)),idctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = reshape(y,n,[]);
y = bsxfun(@times,y,w{dim});
y(1,:) = y(1,:)/sqrt(2);
y = ifft(y,[],1);
y = real(y*sqrt(2*n));
I = (1:n)*0.5+0.5;
I(2:2:end) = n-I(1:2:end-1)+1;
y = y(I,:);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
function Ims = findLedValues(Params, Ims)
%if imNo == 1
% Sample the Target Luminance
leds = 3*sqrt(Ims.targetLumSm).*Params.ledMapSm;
% Clip if the LED values exceed maximum LED value
if max(max(leds))>Params.LED_MAX_LUM,
leds(leds>Params.LED_MAX_LUM)=Params.LED_MAX_LUM;
end
% Find the luminance created by LEDs by taking convolution of LED
% values and Point Spread Function (PSF). To reduce complexity both LED
% values and PSF are their small version.
ledLumSm = conv2(leds, Params.led_psfSm, 'same');
% Update LED values by finding the ratio between the expected
% illumination created by L vector and the desired back illumination.
% Then, this scale has been multiplied with the LED values in order to
% get a much more closer approximation to the desired backlight values.
% Scale the LEDs
Params.SAFETY_MARGIN = 30;
scale = imdilate(Ims.targetLumSm + Params.SAFETY_MARGIN, ones(25,25))./ledLumSm;
leds2 = (leds + 0.1).*scale.*spreadmap(size(Ims.targetLumSm),Params.led_psfSm);
% Clip if the LED values exceed maximum LED value
if max(max(leds2))>Params.LED_MAX_LUM,
leds2(leds2>Params.LED_MAX_LUM)=Params.LED_MAX_LUM;
end
% Find the luminance created by LEDs
ledLum2 = conv2(leds2,Params.led_psfSm, 'same');
Ims.ledLumPrevSm = imfilter(ledLum2, fspecial('disk',5));
tempVec = findledvals(leds2./Params.LED_MAX_LUM, Params.ledLabelsSm);
Ims.ledValsPrev = tempVec(:,2);
%end
%% Iterative Update
% Find the final LED values after an iterative scaling step
% Initialize for iteration
ledLumNew = Ims.ledLumPrevSm;
ledLumOld = ledLumSm;
ledsNew = zeros(size(Ims.ledLumPrevSm));
ledsNew(Params.ledIndicesSm) = Ims.ledValsPrev;
iterNum = 0;
% Iterate until the error between consecutive luminance value maps are
% decreased a certain threshold, decided as 100.
while sum(sum((pu_encode(ledLumNew) - pu_encode(ledLumOld)).^2)) > 10
scaleIt = Ims.targetLumSm./ledLumNew;
% Scale the values and clip values under 0 and above MAX
ledsNew = clipim(ledsNew.*scaleIt, Params.LED_MAX_LUM, 0);
% Find the luminance values wrt newly found LED values
ledLumOld = ledLumNew;
ledLumNew = conv2(ledsNew, Params.led_psfSm, 'same');
iterNum = iterNum + 1;
end
% Find LED values after iteration
tempVec = findledvals(ledsNew./Params.LED_MAX_LUM, Params.ledLabelsSm);
ledsValsNew = ceil(tempVec(:,2).*255)./255;
%% Check Power Constraint
% Assume each LED consumes 1.4 Watts of power. Although the presentation
% mentions 1500W power supply, undercalculate the power to be on the safe
% side always.
totalPower = sum(ledsValsNew*1.44);
if(totalPower > 1400)
disp('-!-Maximum power has been reached. LED values will be revised...');
scalingFactor = totalPower/1400;
% If maximum power is reached, scale it down
ledsValsNewPow = ledsValsNew/scalingFactor;
ledsValsNewPow = ceil(ledsValsNewPow.*255)./255;
else
ledsValsNewPow = ledsValsNew;
end
% Replace the LED values after scaling, and find the backlight
% luminance
ledsValsNewIm = placeleds(ledsValsNewPow, [1080 1920], Params.ledIndices);
baseLum = conv2(ledsValsNewIm.*Params.LED_MAX_LUM, Params.led_psf, 'same');
% Pass values
%Ims.ledLumPrevSm = ledLumNew;
Ims.ledVals = ledsValsNewPow;
Ims.baseLum = baseLum;
end
function Ims = findLcdValues(Params, Ims)
% If the extension is ".hdr" then multiply w/ constant
if strcmp(Ims.fileXt,'.hdr')
lcdLinear = cat(3, Params.LUMINANCE_HDR_CONSTANT*Ims.lastIm(:,:,1)./Ims.baseLum,...
cat(3, Params.LUMINANCE_HDR_CONSTANT*Ims.lastIm(:,:,2)./Ims.baseLum,...
Params.LUMINANCE_HDR_CONSTANT*Ims.lastIm(:,:,3)./Ims.baseLum));
elseif strcmp(Ims.fileXt,'.exr')
lcdLinear = cat(3, Ims.lastIm(:,:,1)./Ims.baseLum,...
cat(3, Ims.lastIm(:,:,2)./Ims.baseLum,...
Ims.lastIm(:,:,3)./Ims.baseLum));
end
% Clip LCD values that exceed 1, and apply Gamma correction
lcdLinear(lcdLinear>1) = 1;
lcdLinear(lcdLinear<0) = 0;
lcdGamCorrd = lcdgammacorr(lcdLinear);
% Apply contrast enhancement step - Find histogram of LCD values, when
% the cumulative value of these histogram bins reach pre-determined
% threshold of << mean(histVals(:))/2 >> take that bin and stretch that
% value to 0
histVals = hist(lcdGamCorrd(:),500);
cumHistVals = cumsum(histVals);
minInd = find( cumHistVals > mean(histVals(:))/2 ,1)/500;
lcdGamCorrd = imadjust(lcdGamCorrd, [minInd, minInd, minInd; 1 1 1], []);
% Convert it to unit8 data type
Ims.lcdGamCorrdUint8 = uint8(lcdGamCorrd*255);
end
function ledVals = findledvals(image, ledLabels)
% Concatanate the image and ledLabels
togetherArray = cat(3, ledLabels, image);
togetherVector = reshape(togetherArray, [], 2);
% Sort the rows to have LED IDs at the bottom
ledValsTemp = sortrows(togetherVector,1);
ledVals = ledValsTemp(end-2201:end,:);
end
function resArray = lcdgammacorr(inpVal, chanNum, valsArray)
% If not manually entered, load predetermined values
if ~exist('valsArray','var')
load('lcdGammaCorr.mat');
end
% Gamma correct image according to channel number
if size(inpVal, 3) == 3
resArray(:,:,1) = fnredval(inpVal(:,:,1), valsArray(1,:));
resArray(:,:,2) = fngrnval(inpVal(:,:,2), valsArray(2,:));
resArray(:,:,3) = fnbluval(inpVal(:,:,3), valsArray(3,:));
elseif size(inpVal, 3) == 1
if chanNum == 1
resArray = fnredval(inpVal,valsArray(1,:));
elseif chanNum == 2
resArray = fngrnval(inpVal,valsArray(2,:));
elseif chanNum == 3
resArray = fnbluval(inpVal,valsArray(3,:));
end
else
error('wrong operation in lcdGammaVals...');
end
end
% Process Red Channel
function res = fnredval(inpX, valsRed)
% Interpolate for intermediate values
lowVal = valsRed(floor(inpX*255)+1);
upVal = valsRed(ceil(inpX*255)+1);
powRed = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powRed);
end
% Process Green Channel
function res = fngrnval(inpX, valsGrn)
% Interpolate for intermediate values
lowVal = valsGrn(floor(inpX*255)+1);
upVal = valsGrn(ceil(inpX*255)+1);
powGrn = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powGrn);
end
% Process Blue Channel
function res = fnbluval(inpX, valsBlu)
% Interpolate for intermediate values
lowVal = valsBlu(floor(inpX*255)+1);
upVal = valsBlu(ceil(inpX*255)+1);
powBlu = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powBlu);
end
function resArray = lcdgammacorrinv(inpVal, chanNum, valsArray)
if ~exist('valsArray','var')
load('lcdGammaCorr.mat');
valsArray = ones(size(valsArray))./valsArray;
end
% Inverse Gamma correct image according to channel number
if size(inpVal, 3) == 3
resArray(:,:,1) = fnRedVal(inpVal(:,:,1),valsArray(1,:));
resArray(:,:,2) = fnGrnVal(inpVal(:,:,2),valsArray(2,:));
resArray(:,:,3) = fnBluVal(inpVal(:,:,3),valsArray(3,:));
elseif size(inpVal, 3) == 1
if chanNum == 1
resArray = fnRedVal(inpVal,valsArray(1,:));
elseif chanNum == 2
resArray = fnGrnVal(inpVal,valsArray(2,:));
elseif chanNum == 3
resArray = fnBluVal(inpVal,valsArray(3,:));
end
else
error('wrong operation in lcdGammaVals...');
end
end
% Process Red Channel
function res = fnRedVal(inpX, valsRed)
% Interpolate for intermediate values
lowVal = valsRed(floor(inpX*255)+1);
upVal = valsRed(ceil(inpX*255)+1);
powRed = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powRed);
end
% Process Green Channel
function res = fnGrnVal(inpX, valsGrn)
% Interpolate for intermediate values
lowVal = valsGrn(floor(inpX*255)+1);
upVal = valsGrn(ceil(inpX*255)+1);
powGrn = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powGrn);
end
% Process Blue Channel
function res = fnBluVal(inpX, valsBlu)
% Interpolate for intermediate values
lowVal = valsBlu(floor(inpX*255)+1);
upVal = valsBlu(ceil(inpX*255)+1);
powBlu = lowVal + (inpX-floor(inpX)).*(upVal-lowVal);
res = inpX.^(1./powBlu);
end
function [ledsPlaced, ledIndices] = placeleds(ledArray, imSize, ledIndices)
if(~exist('ledIndices', 'var'))
% Find locations of LEDs
[~, ~, ledIndices] = findLEDpositions(imSize);
end
% Create an empty image and place LED values
ledsPlaced = zeros(imSize(1:2));
ledsPlaced(ledIndices) = ledArray;
end
function impactMap = spreadmap(imSize, ledPsf, ledMax)
if(~exist('ledMax', 'var')), ledMax = 235; end;
% Find luminance values if all the LEDs are turned on
ledMap = findledpositions(imSize(1:2), 0);
ledLum = conv2(ledMap*ledMax,ledPsf, 'same');
% Divide all the luminance values found by the center pixel's value
midVal = round(ledLum(imSize(1)/2,imSize(2)/2));
impactMap = repmat(midVal, imSize(1:2))./ledLum;
end
function clippedIm = clipim(image, upLim, lowLim)
% Check if upLim >= lowLim
if upLim < lowLim,
error('Upper limit cannot be smaller than lower limit!!');
end
clippedIm = image;
clippedIm(image>upLim) = upLim;
clippedIm(image<lowLim) = lowLim;
end
function [hdrImDviP, ledLum3d] = dviplus2hdrim(ledVals, lcdVals, led_psf)
if ~exist('led_psf','var'),
led_psf = lum(hdrimread('psf_model.pfm'));
end
LED_MAX_LUM = 180;
% Get LED Values
[~, ~, ledIndices] = findledpositions(size(lcdVals), 0);
% Find luminance map
tempIm = zeros(size(lcdVals,1),size(lcdVals,2));
tempIm(ledIndices) = double(ledVals)./255;
ledLum = conv2(tempIm, led_psf*LED_MAX_LUM, 'same');
ledLum3d = repmat(ledLum,[1 1 3]);
% Take RGB Values
tempIm = double(lcdVals);
tempIm = tempIm/255;
% Remove gamma-correction
lcdRatio = lcdgammacorrinv(tempIm);
% Normalize the image between 0.005-1 to simulate the light leakage caused
% by the LCD non-ideality.
lcdRatio = normim(lcdRatio, 1, 0.005);
% Find HDR Image by multiplying the luminance and LCD values
hdrImDviP = ledLum3d.*lcdRatio;
end
function normalizedIm = normim(image, upLim, lowLim)
%NORMIM Normalize the given image within the range defined.
%
% NORMALIZEDIM = NORMIM(IMAGE, UPLIM, LOWLIM) Normalizes the input IMAGE
% within the range defined by UPLIM and LOWLIM. So that, the minimum
% value of the NORMALIZEDIM becomes LOWLIM and the maximum value becomes
% UPLIM.
%
% Examples:
% normalizedIm = normim(image, 1, 0)
% normalizedIm = normim(image, 1, 0.005)
% normalizedIm = normim(image, 10, -10)
%
% ---------------------
% - Emin Zerman / emin.zerman@telecom-paristech.fr
% - Created: 04/05/2015
% - Telecom ParisTech - TSI - MM
% ---------------------
% If lowLim and upLim are not supplied, normalize between 0-1
if ~exist('upLim','var'),
upLim = 1;
end
if ~exist('lowLim','var'),
lowLim = 0;
end
% Find the scale and remove any offset
targetScale = upLim - lowLim;
imScale = max(image(:)) - min(image(:));
% Scale the image and normalize within range
normalizedIm = image*targetScale/imScale;
normalizedIm = normalizedIm - (min(normalizedIm(:)) - lowLim);
end
function dviPlusIm = getdviplusim(ledVals, lcdVals, fileName)
%% Create DVI Plus header
% Since the DVI+ image uses first two lines to pass the information about
% LEDs, we have to write this information in the first two lines of the
% image.
newImage = zeros(size(lcdVals));
% Write DVI+ header for display to understand this image is a special image
dviPheader = [...
158 158 158;
23 23 23;
211 211 211;
36 36 36;
198 198 198;
53 53 53;
187 187 187;
79 79 79;
0 0 0;
0 0 0;
59 36 0;
127 71 55;
0 0 0;
8 153 7];