-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample-3A-JL-01.R
692 lines (575 loc) · 29.4 KB
/
sample-3A-JL-01.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# housekeeping -----------------------------------------------------------
rm(list = ls())
options(digits.secs = 6)
options(warn = -1)
# packages ----------------------------------------------------------------
if(!require(pacman)) install.packages("pacman"); require(pacman)
p_load(data.table, scales, ggplot2, rstudioapi, ModelMetrics, lubridate,
leaps, car, MASS)
# setting up path ---------------------------------------------------------
code_path <- setwd(dirname(getActiveDocumentContext()$path))
rootpath <- gsub(basename(code_path), "", code_path)
# importing data -------------------------------------------------------------
# garbage collection
gc()
# Trade Data
# DATE DATE Date of trade
# EX CHAR Exchange that issued the trade
# PRICE NUM Price of trade
# SIZE NUM Volume of trade
# SYM_ROOT CHAR Security symbol root
# SYM_SUFFIX CHAR Security symbol suffix
# TIME_M NUM Time of Trade or Quote with milliseconds (HHMMSSXXX)
# TR_CORR CHAR Trade Correction Indicator
# TR_RF CHAR Trade Reporting Facility
# TR_SCOND CHAR Trade Sale Condition (up to 4 codes)
# TR_SEQNUM NUM Trade Sequence Number
# TR_SOURCE CHAR Source of Trade
# TR_STOPIND CHAR Trade Stop Stock Indicator (NYSE Only)
colclassT = c('DATE' = 'character',
'TIME_M' = 'character',
'EX' = 'factor',
'SYM_ROOT' = 'factor',
'SYM_SUFFIX' = 'factor',
'TR_SCOND' = 'factor',
'SIZE' = 'integer',
'PRICE' = 'double',
'TR_STOPIND' = 'factor',
'TR_CORR' = 'factor',
'TR_SEQNUM' = 'integer',
'TR_SOURCE' = 'factor',
'TR_RF' = 'factor')
trades <- fread(paste0(rootpath, 'data/BABA-trades-201505.csv'),
header = T, sep = ',', colClasses = colclassT)
# structure of trades
str(trades)
# research levels of columns to decide whether or not to delete them
levels(trades$SYM_SUFFIX)
levels(trades$SYM_ROOT)
levels(trades$TR_SCOND)
levels(trades$TR_STOPIND)
levels(trades$TR_CORR)
levels(trades$TR_SEQNUM)
levels(trades$TR_SOURCE)
# eliminate SYM_ROOT, SYM_SUFFIX, TR_RF, TR_STOPIND, TR_SEQNUM, TR_SOURCE, TR_CORR
trades[, c('SYM_SUFFIX', 'SYM_ROOT', 'TR_RF', 'TR_STOPIND', 'TR_SEQNUM', 'TR_SOURCE','TR_CORR'):= NULL]
# trades per exchange
ex_sym <- data.frame(EX = c('A', 'B', 'C', 'D', 'I', 'J', 'K', 'M', 'N', 'P', 'S', 'T', 'Q', 'V', 'W', 'X', 'Y', 'Z'),
NAME = c('NYSE MKT LLC',
'NASDAQ OMX BX, Inc.',
'National Stock Exchange Inc. (NSX)',
'Financial Industry Regulatory Authority, Inc. (FINRA ADF)',
'International Securities Exchange, LLC (ISE)',
'Bats EDGA Exchange, INC',
'Bats EDGX Exchange, Inc.',
'Chicago Stock Exchange, Inc. (CHX)',
'New York Stock Exchange LLC',
'NYSE Arca, Inc.',
'Consolidated Tape System',
'NASDAQ Stock Exchange, LLC (in Tape A, B securities)',
'NASDAQ Stock Exchange, LLC (in Tape C securities)',
'The Investors’ Exchange, LLC (IEX)',
'Chicago Broad Options Exchange, Inc.(CBOE)',
'NASDAQ OMX PSX, Inc. LLC',
'Bats BYX Exchange, Inc.',
'Bats BZX Exchange, Inc.')
)
exchange_t <- trades[, .N,by = EX]
exchange_sym_t <- merge(ex_sym, exchange_t, by = 'EX', all.y = T)
exchange_sym_t[order(-rank(exchange_sym_t$N)), ]
# Quote Data
# ASK NUM Ask price
# ASKEX CHAR Ask exchange
# ASKSIZ NUM Ask size in units of trade
# BID NUM Bid price
# BIDEX CHAR Bid exchange
# BIDSIZ NUM Bid size in units of trade
# DATE DATE Date of quote
# EX CHAR Exchange that issued the quote
# NASDBBO_IND CHAR NASD BBO Indicator
# NATBBO_IND CHAR National BBO Indicator
# QU_CANCEL CHAR Quote Cancel/Correction
# QU_COND CHAR Condition of quote issued
# QU_SEQNUM NUM Quote Sequence Number
# QU_SOURCE CHAR Source of Quote
# SYM_ROOT CHAR Security symbol root
# SYM_SUFFIX CHAR Security symbol suffix
# TIME_M NUM Time of Trade or Quote with milliseconds (HHMMSSXXX)
colclassQ = c('DATE' = 'character',
'TIME_M' = 'character',
'EX' = 'factor',
'SYM_ROOT' = 'factor',
'SYM_SUFFIX' = 'factor',
'BID' = 'double',
'BIDSIZ' = 'integer',
'ASK' = 'double',
'ASKSIZ' = 'integer',
'QU_COND' = 'factor',
'BIDEX' = 'factor',
'ASKEX' = 'factor',
'QU_SEQNUM' = 'factor',
'NATBBO_IND' = 'factor',
'NASDBBO_IND'= 'factor',
'QU_CANCEL' = 'factor',
'QU_SOURCE' = 'factor')
quotes <- fread(paste0(rootpath, 'data/BABA-quotes-201505.csv'), header = T, sep = ',', colClasses = colclassQ)
# structure of quotes
str(quotes)
# research levels of columns to decide whether or not to delete them
levels(quotes$SYM_ROOT)
levels(quotes$SYM_SUFFIX)
levels(quotes$NATBBO_IND)
levels(quotes$NASDBBO_IND)
levels(quotes$QU_CANCEL)
levels(quotes$QU_SOURCE)
# learning point:
# QU_COND:
# ___C___ = Closing;
# ___O___ = Opening Quote;
# ___R___ = Regular, two-sided open quote.
levels(quotes$QU_COND)
# eliminate SYM_ROOT, SYM_SUFFIX, QU_COND, NATBBO_IND, NASDBBO_IND, QU_CANCEL, QU_SOURCE
quotes[, c('SYM_ROOT', 'SYM_SUFFIX', 'QU_COND', 'NATBBO_IND', 'NASDBBO_IND', 'QU_CANCEL', 'QU_SOURCE') := NULL]
# quotes per exchange
exchange_q <- quotes[, .N, by = EX]
exchange_sym_q <- merge(ex_sym, exchange_q, by = 'EX', all.y = T)
exchange_sym_q[order(-rank(exchange_sym_q$N)), ]
gc()
# data cleansing ----------------------------------------------------------
# convert uppercase column names into lowercase to be consistent
setnames(trades,tolower(colnames(trades)))
setnames(quotes,tolower(colnames(quotes)))
# exclude nagetive bid/ask price and size
quotes <- quotes[bid > 0 & ask > 0 & bidsiz > 0 & asksiz > 0 & ask > bid, ]
# deal with time formatting
# # EXPERIMENT
# # way 1: base::as.POSIXct
# # time the code
# ptm <- proc.time()
#
# trades[, datetime := as.POSIXct(paste(date, time_m), format = '%Y%m%d %H:%M:%OS')]
#
# proc.time() - ptm # running time
#
# # way2: lubridate::parse_date_time()
# ptm <- proc.time()
#
# trades[, datetime_ps := parse_date_time(paste(date,time_m), '%Y%m%d %H:%M:%OS', tz = 'America/New_York')]
#
# proc.time() - ptm # running time
#
# # check if they are identical
# mod <- lm(trades$datetime ~ trades$datetime_ps)
# trades[, 'datetime_ps' := NULL]
# trades
trades[, datetime := parse_date_time(paste(date,time_m), '%Y%m%d %H:%M:%OS', tz = 'America/New_York')]
trades[, ':='(date = strftime(datetime,'%Y-%m-%d'),
time_m = strftime(datetime,'%H:%M:%S'))] # convert time back to string
# quotes
quotes[, datetime := parse_date_time(paste(date,time_m), '%Y%m%d %H:%M:%OS', tz = 'America/New_York')]
quotes[, ':='(date = strftime(datetime,'%Y-%m-%d'),
time_m = strftime(datetime,'%H:%M:%S'))]
# only keep the trades and quotes that happened in normal trading time, with 15min's adjustment
trades <- trades[time_m >= '09:45:00' & time_m <= '15:45:00']
quotes <- quotes[time_m >= '09:45:00' & time_m <= '15:45:00']
# check the sequence of timestamps and set datetime as key
any(shift(trades$datetime, type = 'lead') < trades$datetime, na.rm = T)
any(shift(quotes$datetime, type = 'lead') < quotes$datetime, na.rm = T)
# set datetime as key in trades
setkey(trades, datetime)
setkey(quotes, datetime)
# We can also use quotes' sequence number to check the sequence of datetime
any(shift(quotes$qu_seqnum, type = "lead") < quotes$qu_seqnum, na.rm = T)
# get 1 min intervals
trades[, mins := cut(datetime, '1 min')]
quotes[, mins := cut(datetime, '1 min')]
# trade price outlier detection
# How do we define outlier?
# way1: absolute value of intraminute return greater than 0.1
trades[, ':=' (priceAvg = mean(price),
priceSd = sd(price)),
by = mins]
trades[, price_dev := abs(price - priceAvg) / priceAvg]
# trades_outlier_threshold <- function(sequence) {
# df <- data.frame(threshold = integer(),
# rownum = integer(),
# percent = integer())
# j <- 1
# row_t <- nrow(trades)
# for(i in sequence) {
# trades[, outliers := ifelse(price_dev > i, T, F)]
# row_o <- nrow(trades[outliers == T, ])
# df[j, ] <- c(i, row_o, percent(row_o / row_t, accuracy = .0001))
# j <- j + 1
# }
# return(df)
# }
#
# trades_outlier_threshold(seq(0, 0.1, 0.01))
# defind threshold for outliers
trades[, outliers := ifelse(price_dev > 0.01, T, F)]
# take a look at outliers
trades[outliers == T, c('datetime', 'ex', 'tr_scond', 'size', 'price', 'priceAvg')]
# keep only non-outlier to trades
trades <- trades[outliers == F, ]
# quotes price outlier detection
quotes[, ':='(bidAvg = mean(bid),
askAvg = mean(ask),
bidSd = sd(bid),
askSd = sd(ask)),
by = mins]
# test the threshold of deciding outliers
quotes[, ':=' (bid_dev = abs(bid - bidAvg) / bidAvg,
ask_dev = abs(ask - askAvg) / askAvg)]
# quotes_outlier_threshold <- function(sequence) {
# df <- data.frame(threshold = integer(),
# rownum = integer(),
# percent = integer())
# j <- 1
# row_q <- nrow(quotes)
# for(i in sequence) {
# quotes[, outliers := ifelse(bid_dev > i | ask_dev > i, T, F)]
# row_o <- nrow(quotes[outliers == T, ])
# df[j, ] <- c(i, row_o, percent(row_o / row_q, accuracy = .0001))
# j <- j + 1
# }
# return(df)
# }
#
# quotes_outlier_threshold(seq(0, 0.3, 0.05))
# quotes_outlier_threshold(seq(0, 0.05, 0.01))
# defind threshold for outliers
quotes[, outliers := ifelse(bid_dev > 0.01 | ask_dev > 0.01, T, F)]
# take a look at outliers
quotes[outliers == T, c('datetime', 'ex', 'bid', 'bidAvg', 'bidsiz', 'ask', 'askAvg', 'asksiz', 'bid_dev', 'ask_dev')]
# keep only non-outlier to quotes
quotes <- quotes[outliers == F, ]
# way 2: Use different time intervals and standard deviation
# standard deviation of bid and ask over 20 trading days
sd(quotes$bid)
sd(quotes$ask)
# feature engineering -----------------------------------------------------
lags = 4
# trades
# create summary characteristics by minutes in trades
Tmin <- trades[, .(priceAvg = mean(price),
volume = sum(size),
firstPrice = head(price, 1),
lastPrice = tail(price, 1)),
by = mins]
# take 1-min leads and lags
Tmin[, ':=' (lastPrice_1lead = shift(lastPrice, type = 'lead', n = 1),
lastPrice_1lag = shift(lastPrice, type = 'lag', n = 1),
lastPrice_2lag = shift(lastPrice, type = 'lag', n = 2),
lastPrice_3lag = shift(lastPrice, type = 'lag', n = 3),
lastPrice_4lag = shift(lastPrice, type = 'lag', n = 4),
priceAvg_1lag = shift(priceAvg, type = 'lag' , n = 1),
priceAvg_2lag = shift(priceAvg, type = 'lag' , n = 2),
priceAvg_3lag = shift(priceAvg, type = 'lag' , n = 3),
priceAvg_4lag = shift(priceAvg, type = 'lag' , n = 4),
volumn_1lag = shift(volume, type = 'lag' , n = 1))]
# set mins as key in Tmin
setkey(Tmin, mins)
# get 1 day intervals
Tmin[, days := cut(as.POSIXct(mins), '1 day')]
# mark the first and the last minutes of the day
Tmin[, ':=' (last_min = ifelse(mins %in% tail(mins, lags), T, F),
first_min = ifelse(mins %in% head(mins, lags), T, F)),
by = days]
# clear the first and last trades of the day, to deal with leads and lags
Tmin <- Tmin[first_min == F & last_min == F, ]
# caclulate RHS variables
Tmin[, ':='(LPminuspriceAvg = lastPrice - priceAvg,
Volume1min_past = volume - volumn_1lag,
R1min_future = (Tmin$lastPrice_1lead - lastPrice) / lastPrice,
R1min_past = (Tmin$lastPrice - lastPrice_1lag) / lastPrice_1lag,
R2min_past = (Tmin$lastPrice_1lag - lastPrice_2lag) / lastPrice_2lag,
R3min_past = (Tmin$lastPrice_2lag - lastPrice_3lag) / lastPrice_3lag,
R4min_past = (Tmin$lastPrice_3lag - lastPrice_4lag) / lastPrice_4lag,
RAvg1min_past = (Tmin$priceAvg - priceAvg_1lag) / priceAvg_1lag,
RAvg2min_past = (Tmin$priceAvg_1lag - priceAvg_2lag) / priceAvg_2lag,
RAvg3min_past = (Tmin$priceAvg_2lag - priceAvg_3lag) / priceAvg_3lag,
RAvg4min_past = (Tmin$priceAvg_3lag - priceAvg_4lag) / priceAvg_4lag),]
# quotes
# create summary characteristics by minutes in quotes
Qmin <- quotes[, .(bidaskMid = (mean(bid) + mean(ask))/2,
spreadAvg = mean(ask) - mean(bid),
bidVolume = sum(bidsiz),
askVolume = sum(asksiz),
bidVolumeAvg = mean(bidsiz),
askVolumeAvg = mean(asksiz),
lastbid = tail(bid, 1),
lastask = tail(ask, 1)),
by = mins]
Qmin[, MidVweighted := (askVolume * lastbid + bidVolume * lastask) / (askVolume + bidVolume), ]
# take 1-min leads and lags
Qmin[, ':=' (bidaskMid_1lead = shift(Qmin$bidaskMid, type = 'lead', n = 1),
bidaskMid_1lag = shift(Qmin$bidaskMid, type = 'lag' , n = 1),
bidaskMid_2lag = shift(Qmin$bidaskMid, type = 'lag' , n = 2),
bidaskMid_3lag = shift(Qmin$bidaskMid, type = 'lag' , n = 3),
bidaskMid_4lag = shift(Qmin$bidaskMid, type = 'lag' , n = 4),
spreadAvg_1lag = shift(Qmin$spreadAvg, type = 'lag', n = 1),
bidVolume_1lag = shift(Qmin$bidVolume, type = 'lag', n = 1),
bidVolume_2lag = shift(Qmin$bidVolume, type = 'lag', n = 2),
bidVolume_3lag = shift(Qmin$bidVolume, type = 'lag', n = 3),
bidVolume_4lag = shift(Qmin$bidVolume, type = 'lag', n = 4),
askVolume_1lag = shift(Qmin$askVolume, type = 'lag' , n = 1),
askVolume_2lag = shift(Qmin$askVolume, type = 'lag' , n = 2),
askVolume_3lag = shift(Qmin$askVolume, type = 'lag' , n = 3),
askVolume_4lag = shift(Qmin$askVolume, type = 'lag' , n = 4),
bidVolumeAvg_1lag = shift(Qmin$bidVolumeAvg, type = 'lag', n = 1),
bidVolumeAvg_2lag = shift(Qmin$bidVolumeAvg, type = 'lag', n = 2),
bidVolumeAvg_3lag = shift(Qmin$bidVolumeAvg, type = 'lag', n = 3),
bidVolumeAvg_4lag = shift(Qmin$bidVolumeAvg, type = 'lag', n = 4),
askVolumeAvg_1lag = shift(Qmin$askVolumeAvg, type = 'lag', n = 1),
askVolumeAvg_2lag = shift(Qmin$askVolumeAvg, type = 'lag', n = 2),
askVolumeAvg_3lag = shift(Qmin$askVolumeAvg, type = 'lag', n = 3),
askVolumeAvg_4lag = shift(Qmin$askVolumeAvg, type = 'lag', n = 4),
MidVweighted_1lag = shift(Qmin$MidVweighted, type = 'lag', n = 1)),]
# set mins as key in Qmin
setkey(Qmin, mins)
# get 1 day intervals
Qmin[, days := cut(as.POSIXct(mins), '1 day')]
# mark the first and the last two minutes of the day
Qmin[, ':=' (last_min = ifelse(mins %in% tail(mins, lags), T, F),
first_min = ifelse(mins %in% head(mins, lags), T, F)),
by = days]
# clear the first and last trades of the day, to deal with leads and lags
Qmin <- Qmin[first_min == F & last_min == F, ]
# caclulate RHS variables
Qmin[, ':='(askVolumeDiff1 = (askVolumeAvg_1lag - askVolumeAvg_2lag) / (askVolumeAvg_1lag + askVolumeAvg),
askVolumeDiff2 = (askVolumeAvg_2lag - askVolumeAvg_3lag) / (askVolumeAvg_2lag + askVolumeAvg_1lag),
askVolumeDiff3 = (askVolumeAvg_3lag - askVolumeAvg_4lag) / (askVolumeAvg_3lag + askVolumeAvg_2lag),
bidVolumeDiff1 = (Qmin$bidVolumeAvg_1lag - Qmin$bidVolumeAvg_2lag) / (Qmin$bidVolumeAvg_1lag + Qmin$bidVolumeAvg),
bidVolumeDiff2 = (Qmin$bidVolumeAvg_2lag - Qmin$bidVolumeAvg_3lag) / (Qmin$bidVolumeAvg_2lag + Qmin$bidVolumeAvg_1lag),
bidVolumeDiff3 = (Qmin$bidVolumeAvg_3lag - Qmin$bidVolumeAvg_4lag) / (Qmin$bidVolumeAvg_3lag + Qmin$bidVolumeAvg_2lag),
MidoverSpread = (Qmin$bidaskMid - Qmin$lastbid) / Qmin$spreadAvg - 1/2,
VolumeRatio1 = (Qmin$bidVolume - Qmin$bidVolume_1lag) / (Qmin$askVolume - Qmin$askVolume_1lag),
VolumeRatio2 = (Qmin$bidVolume_1lag - Qmin$bidVolume_2lag) / (Qmin$askVolume_1lag - Qmin$askVolume_2lag),
VolumeRatio3 = (Qmin$bidVolume_2lag - Qmin$bidVolume_3lag) / (Qmin$askVolume_2lag - Qmin$askVolume_3lag),
VolumeRatio4 = (Qmin$bidVolume_3lag - Qmin$bidVolume_4lag) / (Qmin$askVolume_3lag - Qmin$askVolume_4lag),
MidR1min_future = (Qmin$bidaskMid_1lead - Qmin$bidaskMid) / Qmin$bidaskMid,
MidR1min_past = (Qmin$bidaskMid - Qmin$bidaskMid_1lag) / Qmin$bidaskMid_1lag,
MidR2min_past = (Qmin$bidaskMid_1lag - Qmin$bidaskMid_2lag) / Qmin$bidaskMid_2lag,
MidR3min_past = (Qmin$bidaskMid_2lag - Qmin$bidaskMid_3lag) / Qmin$bidaskMid_3lag,
MidR4min_past = (Qmin$bidaskMid_3lag - Qmin$bidaskMid_4lag) / Qmin$bidaskMid_4lag,
MidR1min_past_c = ((Qmin$bidaskMid - Qmin$bidaskMid_1lag) / Qmin$bidaskMid_1lag) ^ 3,
MidR2min_past_c = ((Qmin$bidaskMid_1lag - Qmin$bidaskMid_2lag) / Qmin$bidaskMid_2lag) ^ 3,
MidR3min_past_c = ((Qmin$bidaskMid_2lag - Qmin$bidaskMid_3lag) / Qmin$bidaskMid_3lag) ^ 3,
MidR4min_past_c = ((Qmin$bidaskMid_3lag - Qmin$bidaskMid_4lag) / Qmin$bidaskMid_4lag) ^ 3,
MidVweightedDiff = (Qmin$MidVweighted - Qmin$MidVweighted_1lag) / Qmin$MidVweighted_1lag), ]
Qmin[, ':='(askVolumeR1 = askVolumeDiff1 * MidR1min_past,
askVolumeR2 = askVolumeDiff2 * MidR2min_past,
askVolumeR3 = askVolumeDiff3 * MidR3min_past,
bidVolumeR1 = bidVolumeDiff1 * MidR1min_past,
bidVolumeR2 = bidVolumeDiff2 * MidR2min_past,
bidVolumeR3 = bidVolumeDiff3 * MidR3min_past)]
# merge
Panel <- merge(Tmin, Qmin, by = "mins")
# Tmin 6980 obs
# Qmin 7060 obs
# Panel 6980 obs
# modeling ----------------------------------------------------------------
# split dataset to 80 training set, 20 out of fold set
oof <- Panel[(nrow(Panel)*0.8 + 1):nrow(Panel), ]
train <- Panel[1:(nrow(Panel)*0.8) , ]
# train a model to predict outcome
# simple
mod1 <- lm(MidR1min_future ~ askVolumeDiff1 + askVolumeDiff2 + askVolumeDiff3 +
bidVolumeDiff1 + bidVolumeDiff2 + bidVolumeDiff3 +
MidoverSpread + MidVweightedDiff +
VolumeRatio1 + VolumeRatio2 + VolumeRatio3 + VolumeRatio4 +
MidR1min_past + MidR2min_past + MidR3min_past + MidR4min_past +
MidR1min_past_c + MidR2min_past_c + MidR3min_past_c + MidR4min_past_c +
R1min_past + R2min_past + R3min_past + R4min_past +
RAvg1min_past + RAvg2min_past + RAvg3min_past + RAvg4min_past +
askVolumeR1 + askVolumeR2 + askVolumeR3 +
bidVolumeR1 + bidVolumeR2 + bidVolumeR3 +
LPminuspriceAvg + Volume1min_past,
data = train)
mod2 <- lm(R1min_future ~ askVolumeDiff1 + askVolumeDiff2 + askVolumeDiff3 +
bidVolumeDiff1 + bidVolumeDiff2 + bidVolumeDiff3 +
MidoverSpread + MidVweightedDiff +
VolumeRatio1 + VolumeRatio2 + VolumeRatio3 + VolumeRatio4 +
MidR1min_past + MidR2min_past + MidR3min_past + MidR4min_past +
MidR1min_past_c + MidR2min_past_c + MidR3min_past_c + MidR4min_past_c +
R1min_past + R2min_past + R3min_past + R4min_past +
RAvg1min_past + RAvg2min_past + RAvg3min_past + RAvg4min_past +
askVolumeR1 + askVolumeR2 + askVolumeR3 +
bidVolumeR1 + bidVolumeR2 + bidVolumeR3 +
LPminuspriceAvg + Volume1min_past,
data = train)
summary(mod1)
# r^2: 0.371
# adjr2: 0.367
summary(mod2)
# r^2: 0.01533
# adjr2: 0.00901
# all subset regression
mod3 <- regsubsets(MidR1min_future ~ askVolumeDiff1 + askVolumeDiff2 + askVolumeDiff3 +
bidVolumeDiff1 + bidVolumeDiff2 + bidVolumeDiff3 +
MidoverSpread + MidVweightedDiff +
VolumeRatio1 + VolumeRatio2 + VolumeRatio3 + VolumeRatio4 +
MidR1min_past + MidR2min_past + MidR3min_past + MidR4min_past +
MidR1min_past_c + MidR2min_past_c + MidR3min_past_c + MidR4min_past_c +
R1min_past + R2min_past + R3min_past + R4min_past +
RAvg1min_past + RAvg2min_past + RAvg3min_past + RAvg4min_past +
askVolumeR1 + askVolumeR2 + askVolumeR3 +
bidVolumeR1 + bidVolumeR2 + bidVolumeR3 +
LPminuspriceAvg + Volume1min_past,
data = train,
nbest = 1, # 1 best model for each number of predictors
nvmax = NULL, # NULL for no limit on number of variables
force.in = NULL, force.out = NULL,
method = "exhaustive")
mod4 <- regsubsets(R1min_future ~ askVolumeDiff1 + askVolumeDiff2 + askVolumeDiff3 +
bidVolumeDiff1 + bidVolumeDiff2 + bidVolumeDiff3 +
MidoverSpread + MidVweightedDiff +
VolumeRatio1 + VolumeRatio2 + VolumeRatio3 + VolumeRatio4 +
MidR1min_past + MidR2min_past + MidR3min_past + MidR4min_past +
MidR1min_past_c + MidR2min_past_c + MidR3min_past_c + MidR4min_past_c +
R1min_past + R2min_past + R3min_past + R4min_past +
RAvg1min_past + RAvg2min_past + RAvg3min_past + RAvg4min_past +
askVolumeR1 + askVolumeR2 + askVolumeR3 +
bidVolumeR1 + bidVolumeR2 + bidVolumeR3 +
LPminuspriceAvg + Volume1min_past,
data = train,
nbest = 1, # 1 best model for each number of predictors
nvmax = NULL, # NULL for no limit on number of variables
force.in = NULL, force.out = NULL,
method = "exhaustive")
# best model with highest adjusted r^2
mod3bestsiz <- which.max(summary(mod3)$adjr2)
mod3LHS <- as.data.frame(summary(mod3)$which[mod3bestsiz, ])
mod4bestsiz <- which.max(summary(mod4)$adjr2)
mod4LHS <- as.data.frame(summary(mod4)$which[mod4bestsiz, ])
mod3_b <- lm(MidR1min_future ~ askVolumeDiff1 +
bidVolumeDiff2 + bidVolumeDiff3 +
MidoverSpread + MidVweightedDiff +
VolumeRatio1 + VolumeRatio3 +
MidR1min_past + MidR2min_past + MidR3min_past + MidR4min_past +
MidR1min_past_c + MidR2min_past_c + MidR4min_past_c +
R1min_past + R4min_past +
RAvg1min_past + RAvg2min_past + RAvg3min_past + RAvg4min_past +
askVolumeR2 + askVolumeR3 +
bidVolumeR1 +
LPminuspriceAvg + Volume1min_past,
data = train)
summary(mod3_b)
# r^2: 0.3708
# adjr2: 0.368
mod4_b <- lm(R1min_future ~
bidVolumeDiff2 + bidVolumeDiff3 +
MidVweightedDiff +
MidR2min_past_c + MidR3min_past_c + MidR4min_past_c +
R2min_past + R3min_past +
RAvg4min_past +
askVolumeR2 + askVolumeR3 +
bidVolumeR1 + bidVolumeR2 + bidVolumeR3 +
LPminuspriceAvg,
data = train)
summary(mod4_b)
# r^2: 0.01415
# adjr2: 0.01153
# predict outcome on OOF data
oof$MPvalidation <- predict(mod1, oof, type = "response")
oof$LPvalidation <- predict(mod2, oof, type = "response")
oof$MPvalidation_b <- predict(mod3_b, oof, type = "response")
oof$LPvalidation_b <- predict(mod4_b, oof, type = "response")
oof$mins <- as.POSIXct(oof$mins)
# plotting ----------------------------------------------------------------
model1fit1 <-
ggplot(oof, aes(x = MidR1min_future, y = MPvalidation)) +
geom_point(color = 'dark blue') +
stat_smooth(method = "lm", col = "light yellow") +
geom_line(data = data.frame("x-axis" = c(0.0015,-0.0015),
"y-axis" = c(0.0015, -0.0015)),
aes(x = x.axis , y = y.axis), color = 'dark red', size = 1) +
labs(
title = "BABA Future 1-min Bid-Ask Midpoint Return Prediction versus Real Return 36LHS\n(Yellow: Fitted; Dark Red: 45° line)",
x = "Future 1-Min Return", y = "36LHS Prediction") +
theme(
panel.background = element_rect(fill = "white", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey")) +
coord_fixed()
model1fit2 <-
ggplot() +
geom_step(data = oof, aes(x = mins, y = MidR1min_future), color = 'blue') +
geom_step(data = oof, aes(x = mins, y = MPvalidation), color = 'red') +
labs(
title = "BABA Future 1-Min Bid-Ask Midpoint Prediction Return and Real Return Match 36LHS\n(Blue: Real; Red: Prediction)",
x = "Time", y = "Future 1-Min Return") +
theme(
panel.background = element_rect(fill = "white", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey"))
model2fit1 <-
ggplot(oof, aes(x = R1min_future, y = LPvalidation)) +
geom_point(color = 'sky blue') +
stat_smooth(method = "lm", col = "light yellow") +
geom_line(data = data.frame("x-axis" = c(0.0015,-0.0015),
"y-axis" = c(0.0015, -0.0015)),
aes(x = x.axis , y = y.axis), color = 'dark blue', size = 1) +
labs(
title = "BABA Future 1-min Last Price Return Prediction versus Real Return 36LHS\n(Yellow: Fitted; Dark blue: 45° line)",
x = "Future 1-Min Return", y = "36LHS Prediction") +
theme(
panel.background = element_rect(fill = "brown", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey")) +
coord_fixed()
model2fit2 <-
ggplot() +
geom_step(data = oof, aes(x = mins, y = R1min_future), color = 'blue') +
geom_step(data = oof, aes(x = mins, y = LPvalidation), color = 'red') +
labs(
title = "BABA Future 1-Min Last Price Prediction Return and Real Return Match 36LHS\n(Blue: Real; Red: Prediction)",
x = "Time", y = "Future 1-Min Return") +
theme(
panel.background = element_rect(fill = "white", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey"))
model3fit1 <-
ggplot(oof, aes(x = MidR1min_future, y = MPvalidation_b)) +
geom_point(color = 'dark blue') +
stat_smooth(method = "lm", col = "light yellow") +
geom_line(data = data.frame("x-axis" = c(0.0015,-0.0015),
"y-axis" = c(0.0015, -0.0015)),
aes(x = x.axis , y = y.axis), color = 'dark red', size = 1) +
labs(
title = "BABA Future 1-min Bid-Ask Midpoint Return Prediction versus Real Return 25LHS\n(Yellow: Fitted; Dark Red: 45° line)",
x = "Future 1-Min Return", y = "25LHS Prediction") +
theme(
panel.background = element_rect(fill = "white", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey")) +
coord_fixed()
model4fit1 <-
ggplot(oof, aes(x = R1min_future, y = LPvalidation_b)) +
geom_point(color = 'sky blue') +
stat_smooth(method = "lm", col = "light yellow") +
geom_line(data = data.frame("x-axis" = c(0.0015,-0.0015),
"y-axis" = c(0.0015, -0.0015)),
aes(x = x.axis , y = y.axis), color = 'dark blue', size = 1) +
labs(
title = "BABA Future 1-min Last Price Return Prediction versus Real Return 15LHS\n(Yellow: Fitted; Dark blue: 45° line)",
x = "Future 1-Min Return", y = "15LHS Prediction") +
theme(
panel.background = element_rect(fill = "brown", size = 0.1, linetype = "solid"),
panel.grid.major = element_line(size = 0.1, linetype = 'solid', colour = "grey")) +
coord_fixed()
# save graph to output
ggsave("BABA Future 1-Min Mid Point Prediction Return versus Real Return 36LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model1fit1)
ggsave("BABA Future 1-Min Mid Point Prediction Return versus Real Return 25LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model3fit1)
ggsave("BABA Future 1-Min Mid Point Prediction Return and Real Return Match 36LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model1fit2)
ggsave("BABA Future 1-Min Last Price Prediction Return versus Real Return 36LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model2fit1)
ggsave("BABA Future 1-Min Last Price Prediction Return versus Real Return 15LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model4fit1)
ggsave("BABA Future 1-Min Last Price Prediction Return and Real Return Match 36LHS.pdf",
path = paste0(rootpath, 'output'),
plot = model2fit2)