forked from SlavovLab/HIquant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSolvers.py
137 lines (116 loc) · 3.48 KB
/
Solvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from cvxopt import solvers, matrix
solvers.options['show_progress'] = False
from scipy.linalg import block_diag, svd
import sys
import HIquant_functions as hf
def SVD(prot_sub):
"""
SVD sovler:
Return the inferred protein level, Z, r^2
"""
S = prot_sub['S']
X = prot_sub['X']
N = X.shape[1]
M = S.shape[0]
K = S.shape[1]
A1 = np.kron(S, np.eye(N))
A2 = block_diag(*X).T
A = np.concatenate((A1, -A2), axis=1)
U, s, V = np.linalg.svd(A, full_matrices=True)
# U, s, V = svd(A, full_matrices=True, lapack_driver = 'gesvd')
w = V[-1,:]#♌
eigen_spacing = (s[-2]-s[-1])/(s[-2]+s[-1])
if np.sum(w < 0) > np.sum(w > 0):
w = -1 * w
p_vect = w[0: K * N]
U_hat = p_vect.reshape(K, N)
L_hat = w[K * N::]
Z_hat = 1/L_hat
protein = U_hat
X_rec = np.diag(Z_hat).dot(S).dot(U_hat)
Model = X_rec * np.median(X_rec[:]/X[:])
X_norm = hf.norm_mean(X,0)
Rsq = 1- (np.sum(X[:] - Model[:])**2)/np.sum(X_norm**2)
opt = dict()
opt['model'] = Model
opt['rsq'] = Rsq
opt['Z'] = np.diag(Z_hat)
opt['V'] = w # last eigen vector
opt['eigen_spacing'] = eigen_spacing
return protein, opt
def QP(prot_sub):
"""
Quadratic Programming Solver:
Return the inferred protein level, Z, r^2
"""
S = prot_sub['S']
X = prot_sub['X']
N = X.shape[1]
A1 = np.kron(S, np.eye(N))
A2 = -block_diag(*X).T
A1 = matrix(A1)
A2 = matrix(A2)
AA = matrix([[A1], [A2]])
P = matrix(np.dot(AA.T, AA))
dim = P.size[0]
q = matrix(np.zeros(dim))
G = matrix(-np.eye(dim))
h = matrix(np.zeros(dim), (dim, 1))
A = matrix(np.ones(dim), (1, dim))
b = matrix(1.0)
sol = solvers.qp(P, q, G, h, A, b)
w = np.array(sol['x'])
if np.sum(w < 0) > np.sum(w > 0):
w = -1 * w
p_vect = w[0:S.shape[1]*X.shape[1]]
U_hat = np.array(p_vect).reshape(S.shape[1],X.shape[1]) #♌ in test case reshape(2,6)
L_hat = np.concatenate(w[S.shape[1]*X.shape[1]::])
Z_hat = 1/L_hat
protein = U_hat
X_rec = np.diag(Z_hat).dot(S).dot(U_hat)
Model = X_rec * np.median(X_rec[:]/X[:])
X_norm = hf.norm_mean(X,0)
Rsq = 1- (np.sum(X[:] - Model[:])**2)/np.sum(X_norm**2)
opt = dict()
opt['model'] = Model
opt['rsq'] = Rsq
opt['Z'] = np.diag(Z_hat)
return protein, opt
def CD(prot_sub, iter_num):
"""
Coordinate Descent Solver:
retrun inferred protein, Z, r^2, X, error
"""
S = prot_sub['S']
X = prot_sub['X']
if len(sys.argv) < 3:
iter_num = 1000
Num_pep, Num_prot = S.shape
Num_condition = X.shape[1]
# set IC
protein_ic = np.random.randn(Num_prot,Num_condition)
protein = protein_ic
# for loop iterations
for each in range(iter_num):
Prot = protein
dat = S.dot(protein).T
zeta = np.sum(dat * X.T,axis=0)/np.sum(dat*dat,axis=0)
if np.sum(zeta[:]<0):
zeta[zeta<0] = 1e-4
Zeta = np.diag(zeta)
Proteins = np.linalg.lstsq(Zeta.dot(S), X)[0]
if np.sum(Proteins[:]<0):
Proteins[Proteins<0] = 1e-4
protein = Proteins
if np.linalg.norm(Prot[:] - protein[:]) < 1e-8:
break
Model = Zeta.dot(S).dot(protein)
X_norm = hf.norm_mean(X,0)
Rsq = 1- (np.sum(X[:] - Model[:])**2)/np.sum(X_norm**2)
opt = dict()
opt['model'] = Model
opt['rsq'] = Rsq
opt['Z'] = Zeta
opt['error'] = np.linalg.norm(Prot[:] - protein[:])
return protein, opt