-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindividual.py
78 lines (61 loc) · 2.73 KB
/
individual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from typing import List, Tuple
import matplotlib.pyplot as plt
import random
from sys import stderr
from parameters import *
"""
Represents an individual in our population (in our case, a path going through
each city exactly once)
"""
class Individual:
# used to assign an individual id for each individual
__nb_individuals = 0
def __init__(self, route, generation_id):
# list of city indexes, sorted by visit order
self.route: List[int] = route
self.generation_id = generation_id
self.id = Individual.__nb_individuals
self._fitness: float = 0
Individual.__nb_individuals += 1
# get or compute the individual's fitness
def getFitness(self) -> float:
if self._fitness > 0: # fitness already computed
return self._fitness
else: # fitness not computed yet
raise Exception("Tried to get the fitness of an individual whose fitness has not been computed yet.")
# computes the fitness value for the given individual
# note: the higher its fitness, the better the individual is
# -> fitness and path length must have opposite variations
def computeFitness(self, dist_mat):
length = 0
for i in range(nb_cities - 1):
city1_index = self.route[i]
city2_index = self.route[i + 1]
length += dist_mat[city1_index][city2_index]
# don't forget to come back to the starting point! (I did)
length += dist_mat[self.route[nb_cities - 1]][self.route[0]]
self._fitness = 1000000 / length # arbitrary factor to keep fitness readable
return self._fitness
# plots an individual on a 2D plot
def plot(self, cities) -> None:
x_values = [cities[point][0] for point in self.route]
y_values = [cities[point][1] for point in self.route]
# don't forget to come back to the starting point! (I did)
x_values.append(cities[self.route[0]][0])
y_values.append(cities[self.route[0]][1])
plt.title(f"Gen. {self.generation_id} no {self.id}, fitness: {self.getFitness()}")
plt.plot(x_values, y_values)
plt.show()
# applies the individual a random mutation according to the mutation rate
def mutate(self) -> None:
# swap two cities with a chance of mutation_rate
if random.random() < mutation_rate:
c1 = random.randrange(nb_cities)
c2 = random.randrange(nb_cities)
self.route[c1], self.route[c2] = self.route[c2], self.route[c1]
# convenient for printing
def __str__(self):
return f"Individual no {self.id} (gen. {self.generation_id}), fitness: {self._fitness}"
# printing stuff too
def __repr__(self):
return self.__str__()