-
Notifications
You must be signed in to change notification settings - Fork 30
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在ts
、xts
、matrix
、zoo
格式上使用auto.arima
#8
Comments
englianhu
changed the title
在
在Jan 3, 2023
ts
和xts
和matrix
格式上使用auto.arima
ts
、xts
、matrix
、zoo
格式上使用auto.arima
✖ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 1) %>% auto.arima
Series: .
ARIMA(0,1,0)
sigma^2 = 0.0009413966542781437592: log likelihood = 2485.590000000000145519
AIC=-4969.189999999999599822 AICc=-4969.180000000000291038 BIC=-4964.100000000000363798
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 10) %>% auto.arima
Series: .
ARIMA(0,0,0)(0,1,0)[10]
sigma^2 = 0.0009485104828998929894: log likelihood = 2466.949999999999818101
AIC=-4931.899999999999636202 AICc=-4931.899999999999636202 BIC=-4924.510000000000218279
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 12) %>% auto.arima
Series: .
ARIMA(0,0,0)(0,1,0)[12]
sigma^2 = 0.0009501059589014066538: log likelihood = 2462.80999999999994543
AIC=-4923.619999999999890861 AICc=-4923.619999999999890861 BIC=-4916.03999999999996362
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 100) %>% auto.arima
Series: .
ARIMA(0,0,0)(0,1,0)[100]
sigma^2 = 0.001026045399758194815: log likelihood = 2280.530000000000200089
AIC=-4559.060000000000400178 AICc=-4559.060000000000400178 BIC=-4549.369999999999890861
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 120) %>% auto.arima
Series: .
ARIMA(0,0,0)(0,1,0)[120]
sigma^2 = 0.001045028663398494487: log likelihood = 2239.110000000000127329
AIC=-4476.21000000000003638 AICc=-4476.21000000000003638 BIC=-4466.32999999999992724
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 1000) %>% auto.arima
Series: .
ARIMA(0,0,0) with non-zero mean
Coefficients:
mean
117.19461532056617159014422
s.e. 0.01308706771212796507453
sigma^2 = 0.2058672768984180779: log likelihood = -754.5399999999999636202
AIC=1513.07999999999992724 AICc=1513.07999999999992724 BIC=1537.07999999999992724
✔ 1.2 GiB [世博量化研究院*]❯ matrix(测试数据$闭市价, dimnames = list(测试数据$年月日时分, '闭市价'), ncol = 1) %>% zoo(frequency = 1200) %>% auto.arima
Series: .
ARIMA(0,0,0) with non-zero mean
Coefficients:
mean
117.19461532056617159014422
s.e. 0.01308706771212796507453
sigma^2 = 0.2058672768984180779: log likelihood = -754.5399999999999636202
AIC=1513.07999999999992724 AICc=1513.07999999999992724 BIC=1537.44000000000005457 以上设置 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
在
ts
和xts
和matrix
格式上使用auto.arima
数据来源:猫城@englianhu/binary.com-interview-question-data/世博量化研究院/文艺数据库/fx/USDJPY/样本2.rds
测试一下不同函数有何分别,即使设置个
frequency
,结果都是一样...参考资源
The text was updated successfully, but these errors were encountered: