-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSigned.hs
226 lines (169 loc) · 6.31 KB
/
Signed.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
-----------------------------------------------------------------------------
-- |
-- Module : Signed
-- Copyright : (c) Enrique Santos, 2017
-- License : see LICENSE
--
-- Maintainer : Enrique Santos
-- Stability : internal
-- Portability : Portable
--
-- 'Signed' data type and its operations.
--
-- It is defined a type class 'Signed', with functions to operate
-- with a Bool value, which represents the sign.
-- This way, the sign, which is binary, is separated from the value.
-- It is like the scalar product, the scalar being the (bool, &&) group.
--
-- Types Integer, Int, and others can be instances of type class Signed.
-- such that instances can be 'Int', 'Integer', etc,
-- so it should
-- implementmet methods for: Ord, Num, Integral
--
--
-----------------------------------------------------------------------------
module Signed where
-- import Prelude -- hiding (abs, signum, negate)
infixl 7 *.
infixl 6 +., -.
-- class (Integral t, Read t) => Signed t where -- Integral not neccessary
class (Num t, Ord t, Read t) => Signed t where
-- {-# MINIMAL sgn, (*.), (+.) #-}
sgnAbs :: t -> (Bool, t)
sgn :: t -> Bool
abs :: t -> t
signum :: t -> t
(*.), (/.), (+.), (-.) :: t -> Bool -> t
-- (+s), (-s) :: Signed c => c -> t -> t
chSgn :: Signed c => c -> t -> t
-- Base function 'sgn', gives False for negatives, True otherwise
-- It can be viewed as the inverse function of '(*.)',
-- which takes a sign and a value to give a signed result
sgn = (>= 0)
-- One step for both values, as in quotRem
sgnAbs a = (sa, a *. sa)
where sa = sgn a
-- abs is the rest of extracting sgn
abs = snd . sgnAbs
signum 0 = 0
signum a = if sgn a then 1 else -1
-- Arithmetic with a boolean: True is like 1, False is like -1
-- The Signed 'n' is scaled by the boolean
-- (*.) n True = id n
-- (*.) n False = negate n
n *. True = id n
n *. False = negate n
(/.) = (*.)
n +. True = (+ 1) n
n +. False = (subtract 1) n
(-.) n = (n +.) . not
-- change last argument sign from first argument sign
-- like (*.) with the sign of 'y'
chSgn y = (*. sgn y)
-- chSgn = (*.) $ sgn
-- setSgn y = chSgn y . abs
-- setSgn y x = sgn y *. abs x
instance Signed Integer
instance Signed Int
instance Signed Word
instance Signed Bool
--
instance Num Bool where
fromInteger = sgn
abs _ = True
signum = id
negate True = False
negate False = True
-- Question: (1 + 1) must be 1, or 0?
-- xor, beter than (||), for the second case.
-- (+) = (||)
(+) = (==) . not -- definition of 'xor'
(*) = (&&) -- any thing by zero is zero, 0 <==> False
{----------------------------------------------------------------------------
Definition of a type class for short integers (word size): Term
It is thought to store the single elements of non-positional numerical notation
("digits" with signum and exponent), or continued fractions and logarithms.
With this definition, zero can be positive or negative, as every other number.
Programmer can define if +0 == -0, or +0 /= -0
----------------------------------------------------------------------------}
data Term = T {
tSgn :: Bool, -- Signum of Term
tVal :: Int -- Absolut value (unsigned integer) of Term
} deriving (Eq)
tNeg :: Term -> Term
-- Opposite of term
tNeg (T s a) = T (not s) a
incr, decr :: Int -> Term -> Term
-- increments/decrements the absolute vale,
-- that is, the sign of 'a' modifies 'n', or 'n' is scaled by 'sgn a' and summed
-- like (+.) with the sign of 'a'
-- incr n a = a + n *. sgn a
incr n (T sa va) = T sa (va + n)
decr n = incr (-n)
----
instance Enum Term where
fromEnum (T s a) = fromEnum a
toEnum x = T True (toEnum ax)
where (sx, ax) = sgnAbs x
-- pred (T _ 0) = error "Predecessor of '0' or '0-', in Ternary.Term. "
pred (T s 0) = T s 0 -- in order to be a safe function.
pred (T s a) = T s (a - 1)
succ (T s a) = T s (a + 1)
{- Term as an instance of (Num, Ord, Signed)
-}
instance Ord Term where
compare (T s1 x1) (T s2 x2)
| s1 && s2 = compare x1 x2
| s1 = GT
| s2 = LT
| True = compare x2 x1
instance Signed Term where
(+.) s False = pred s -- pred
(+.) s True = succ s -- succ
sgn (T s _) = s
abs (T _ a) = T True a
sgnAbs (T s a) = (s, T True a)
instance Num Term where
fromInteger n = T s (fromIntegral a)
where (s, a) = sgnAbs n
abs = fromIntegral . tVal
-- signum = (*. 1) . sgn -- for just two values, {-1, 1}
signum (T _ 0) = 0
signum (T True _) = 1
signum (T False _) = -1
negate = tNeg
(+) (T xs xv) (T ys yv)
| xs == ys = T xs (xv + yv)
| xv >= yv = T xs (xv - yv)
| True = T ys (yv - xv)
(*) (T xs xv) (T ys yv) = T (xs == ys) (xv * yv)
instance Show Term where
show (T True a) = ' ' : show a
show (T _ a) = ' ' : show a ++ "-"
instance Read Term where
readsPrec _ s =
let rd = reads s in
[(T False a, t) | (a, r) <- rd, ("-", t) <- lex r] ++
[(T True a, t) | (a, r) <- rd, ("+", t) <- lex r] ++
[(T True a, t) | (a, t) <- rd]
-- readsPrec _ s =
-- [(T False a, r) | (a, '-' : r) <- reads r] ++
-- [(T True a, r) | (a, '+' : r) <- reads r] ++
-- [(T True a, r) | (a, r) <- reads r]
-- readsPrec _ s =
-- do
-- (a, '-' : r) <- reads s
-- return (T False a, r)
-- readsPrec _ s = do
-- (a, rest) <- reads s
-- (sg, r) <- lex rest
-- pure $ case sg of
-- "-" -> (T False a, r)
-- "+" -> (T True a , r)
-- _ -> (T True a , rest)
-- class BoolSigned t where
-- {-# MINIMAL signed #-}
-- signed :: Signed s => t -> s
-- signed (a, b) = if b then a else -a
-- instance BoolSigned SInteger
-- instance BoolSigned Term