-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_cnn.py
422 lines (329 loc) · 11.7 KB
/
inference_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import cv2
import os
import mediapipe as mp
import numpy as np
import torch
from torch import nn
from torchvision import transforms
import model as m
import time
import matplotlib.pyplot as plt
import yaml
from argparse import ArgumentParser
from retinaface_detect import detect as retinaface_detect_faces
from retinaface_detect import create_net as retinaface_model
from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework
def process_frame(image, model, mp_face_mesh):
normal_feature = True
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
try:
features = model.process(image).multi_face_landmarks[0].landmark
except Exception as _:
features = []
normal_feature = False
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
h, w, _ = image.shape
landmarks = [[f.x * w, f.y * h] for f in features]
# inverted view, mediapipe uses view from eyes
left_indices = mp_face_mesh.FACEMESH_RIGHT_EYE
right_indices = mp_face_mesh.FACEMESH_LEFT_EYE
if normal_feature:
raw_left_landmarks = [landmarks[idx[0]] for idx in left_indices]
raw_right_landmarks = [landmarks[idx[0]] for idx in right_indices]
# idx - pos
# 1 - 0, 3 - 2, 4 - 7, 6 - 3, 8 - 5, 13 - 1, 14 - 6, 15 - 4
lidx = [1, 3, 15, 14]
left_landmarks = []
for idx in lidx:
left_landmarks.append(raw_left_landmarks[idx])
# idx - pos
# 0 - 6, 3 - 1, 4 - 5, 5 - 4, 6 - 3, 10 - 2, 13 - 7, 14 - 0
ridx = [14, 10, 5, 0]
right_landmarks = []
for idx in ridx:
right_landmarks.append(raw_right_landmarks[idx])
left_landmarks = np.array(left_landmarks)
right_landmarks = np.array(right_landmarks)
return left_landmarks, right_landmarks
else:
return [], []
def process_frame_spiga(frame, processor, retinaface_net, retinaface_cfg):
faces = retinaface_detect_faces(frame, retinaface_net, retinaface_cfg)
normal_feature = True
try:
bbox = extract_bboxes(faces, 0.99)[0]
features = processor.inference(frame, [bbox])
left_land = np.array(features['landmarks'][0])[60:68]
right_land = np.array(features['landmarks'][0])[68:76]
except Exception as _:
features = []
normal_feature = False
if not normal_feature:
left_land, right_land = [], []
return left_land, right_land
def xyxy_to_xywh(bbox):
new_bbox = [0.0] * len(bbox)
new_bbox[0] = bbox[0]
new_bbox[1] = bbox[1]
new_bbox[2] = bbox[2] - bbox[0]
new_bbox[3] = bbox[3] - bbox[1]
return new_bbox
def extract_bboxes(faces, threshold):
bboxes = []
for face in faces:
if face[4] < threshold:
continue
bbox = face[:4]
new_bbox = xyxy_to_xywh(bbox)
bboxes.append(new_bbox)
return bboxes
def get_bbox(land, pad):
hpad, vpad = pad
l, r, t, b = land[0][0], land[2][0], land[1][1], land[3][1]
l = int(l - hpad)
r = int(r + hpad)
t = int(t - vpad)
b = int(b + vpad)
return l, r, t, b
def display_values(image,
fps,
freq,
dur,
aecd,
font_size=0.4,
thickness=1):
font = cv2.FONT_HERSHEY_SIMPLEX
str_fps = f'FPS: {fps:.2f}'
str_freq = f'FREQ: {freq:.3f} b/s'
str_dur = f'DUR: {dur:.3f} s'
str_aecd = f'AECD: {aecd:.3f} s/b'
cv2.putText(image,
str_fps,
(10, 20),
font,
font_size,
(0, 0, 0),
thickness,
cv2.LINE_AA)
cv2.putText(image,
str_freq,
(10, 40),
font,
font_size,
(0, 0, 0),
thickness,
cv2.LINE_AA)
cv2.putText(image,
str_dur,
(10, 60),
font,
font_size,
(0, 0, 0),
thickness,
cv2.LINE_AA)
cv2.putText(image,
str_aecd,
(10, 80),
font,
font_size,
(0, 0, 0),
thickness,
cv2.LINE_AA)
return image
def plot_graphics(name,
frequencies,
durations,
aecds,
fps=60.0,
grid=True,
num_xticks=10,
num_yticks=10):
num = len(frequencies)
sec = num / fps
x = np.linspace(0.0, sec, num)
x_max = x[-1]
freq_max = np.max(frequencies)
dur_max = np.max(durations)
aecd_max = np.max(aecds)
x_ticks_val = np.linspace(0.0, x_max, num=num_xticks)
x_ticks_label = [f'{el:.2f}' for el in x_ticks_val]
y_ticks_freq_val = np.linspace(0.0, freq_max, num=num_yticks)
y_ticks_freq_label = [f'{el:.2f}' for el in y_ticks_freq_val]
y_ticks_dur_val = np.linspace(0.0, dur_max, num=num_yticks)
y_ticks_dur_label = [f'{el:.2f}' for el in y_ticks_dur_val]
y_ticks_aecd_val = np.linspace(0.0, aecd_max, num=num_yticks)
y_ticks_aecd_label = [f'{el:.2f}' for el in y_ticks_aecd_val]
_, (ax11, ax12, ax13) = plt.subplots(1,
3,
figsize=(10, 5),
layout='constrained')
ax11.set_title(f'FREQ')
ax11.set_xlim(0, x_max)
ax11.set_ylim(0, freq_max)
ax11.grid(grid)
ax11.plot(x, frequencies)
ax11.set_xticks(x_ticks_val, x_ticks_label, rotation=90)
ax11.set_yticks(y_ticks_freq_val, y_ticks_freq_label)
ax12.set_title(f'DUR')
ax12.set_xlim(0, x_max)
ax12.set_ylim(0, dur_max)
ax12.grid(grid)
ax12.plot(x, durations)
ax12.set_xticks(x_ticks_val, x_ticks_label, rotation=90)
ax12.set_yticks(y_ticks_dur_val, y_ticks_dur_label)
ax13.set_title(f'AECD')
ax13.set_xlim(0, x_max)
ax13.set_ylim(0, aecd_max)
ax13.grid(grid)
ax13.plot(x, aecds)
ax13.set_xticks(x_ticks_val, x_ticks_label, rotation=90)
ax13.set_yticks(y_ticks_aecd_val, y_ticks_aecd_label)
plt.savefig(name)
def parse():
parser = ArgumentParser()
parser.add_argument('-c',
'--config',
type=str,
default='./config_cnn.yaml')
args = parser.parse_args()
return args
def parse_yaml(file):
with open(file) as f:
my_dict = yaml.safe_load(f)
return my_dict
def main():
args = parse()
config = parse_yaml(args.config)
prefix = config['prefix']
init_fps = config['fps']
model_name = config['model_name']
retinaface_backbone = config['retinaface_backbone']
video_path = prefix + config['input_video']
res_video = prefix + f'/{model_name}_{config["output_video"]}'
graphics = prefix + f'/{model_name}_{config["graphics"]}'
use_cpu = config['use_cpu']
dataset = 'wflw'
pad = (25.0, 50.0)
mp_face_mesh = mp.solutions.face_mesh
face_model = mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
retinaface_weights = './retinaface_pytorch/weights/'
if retinaface_backbone == 'resnet50':
retinaface_weights += 'Resnet50_Final.pth'
elif retinaface_backbone == 'mobile0.25':
retinaface_weights += 'mobilenet0.25_Final.pth'
ret_net, ret_cfg = retinaface_model(network=retinaface_backbone,
weights=retinaface_weights)
spiga_processor = SPIGAFramework(ModelConfig(dataset), use_cpu=use_cpu)
model = getattr(m, 'ResNet20')(3, 2)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda:0'
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to(device)
best_ckpt = os.path.join('./ckpt', 'best.pth')
state_dict = torch.load(best_ckpt)
model.load_state_dict(state_dict)
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.CenterCrop((50, 50))
])
prev_frame_time = 0
new_frame_time = 0
blink_frames = 0
blink_cnt = 0
blink_cont = False
idx = 0
durs = []
freqs = []
aecds = []
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = None
mean_fps = 0.0
video_cap = cv2.VideoCapture(video_path)
while (video_cap.isOpened()):
ret, frame = video_cap.read()
if ret:
if writer is None:
h, w, _ = frame.shape
writer = cv2.VideoWriter(res_video, fourcc, init_fps, (w, h))
idx += 1
prev_frame_time = time.time()
if model_name == 'spiga':
left_land, right_land = process_frame_spiga(frame,
spiga_processor,
ret_net,
ret_cfg)
else:
left_land, right_land = process_frame(frame,
face_model,
mp_face_mesh)
if len(left_land) > 0 and len(right_land) > 0:
ll, lr, lt, lb = get_bbox(left_land, pad)
rl, rr, rt, rb = get_bbox(right_land, pad)
left_eye = frame[lt:lb + 1, ll:lr + 1, :]
right_eye = frame[rt:rb + 1, rl:rr + 1, :]
left_eye = transform(left_eye).to(device).unsqueeze(0)
right_eye = transform(right_eye).to(device).unsqueeze(0)
outputs = model(left_eye, right_eye)
_, predicted = torch.max(outputs.data, 1)
if predicted.item() == 1:
if not blink_cont:
blink_cont = True
blink_cnt += 1
blink_frames += 1
overlay = frame.copy()
h, w, _ = frame.shape
start_point = (int(0), int(0))
end_point = (int(w), int(h))
cv2.rectangle(overlay,
pt1=start_point,
pt2=end_point,
color=(0, 200, 0),
thickness=-1)
frame = cv2.addWeighted(overlay, 0.2, frame, 0.8, 0)
else:
blink_cont = False
dur = blink_frames / init_fps
freq = blink_cnt / idx * init_fps
aecd = dur / blink_cnt if blink_cnt != 0 else 0.0
else:
dur = 0.0
freq = 0.5
aecd = 0.0
durs.append(dur)
freqs.append(freq)
aecds.append(aecd)
new_frame_time = time.time()
fps = 1.0 / (new_frame_time - prev_frame_time)
mean_fps += fps
frame = display_values(frame, fps, freq, dur, aecd)
writer.write(frame)
print(f'processed {idx} frames')
else:
break
print(f'fps {(mean_fps / idx):.2f}')
mean_fqr = f'{sum(freqs) / len(freqs):.3f}'
print('mean frequency', mean_fqr)
print(f'last frequnecy {freqs[-1]:.3f}')
print(f'duration {durs[-1]:.3f}')
print(f'aecd {aecds[-1]:.3f}')
plot_graphics(graphics,
freqs,
durs,
aecds,
init_fps)
video_cap.release()
writer.release()
if __name__ == '__main__':
main()