-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
137 lines (107 loc) · 3.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torch.optim import Adam
import os
from dataset import BlinkDataset
import model as m
CONFIG = {
'dataset': '/db/mEBAL/traindata.txt',
'ckpt': './ckpt',
'resize': (50, 50),
'split': 0.8,
'workers': 8,
'batch_size': 128,
'epochs': 20,
'lr': 0.001,
'weight_decay': 0.0001,
'model': 'ResNet20'
}
def main():
trainlst = CONFIG['dataset']
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(CONFIG['resize']),
transforms.ColorJitter(brightness=0.4,
saturation=0.1,
hue=0.2)
])
dataset = BlinkDataset(trainlst, transform)
trainsize = int(len(dataset) * CONFIG['split'])
valsize = len(dataset) - trainsize
trainset, valset = random_split(dataset, [trainsize, valsize])
trainloader = DataLoader(trainset,
batch_size=CONFIG['batch_size'],
shuffle=True,
num_workers=CONFIG['workers'],
pin_memory=True)
valloader = DataLoader(valset,
batch_size=CONFIG['batch_size'],
shuffle=True,
num_workers=CONFIG['workers'],
pin_memory=True)
model = getattr(m, CONFIG['model'])(3, 2)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda:0'
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to(device)
optimizer = Adam(model.parameters(),
lr=CONFIG['lr'],
weight_decay=CONFIG['weight_decay'])
criterion = nn.CrossEntropyLoss()
train_batches = len(trainloader)
val_batches = len(valloader)
print(f'TRAIN BATCHES: {train_batches}, VAL BATCHES: {val_batches}')
try:
ckpt = CONFIG['ckpt']
os.system(f'mkdir {ckpt}')
except Exception as _:
pass
last_ckpt = os.path.join(CONFIG['ckpt'], 'last.pth')
best_ckpt = os.path.join(CONFIG['ckpt'], 'best.pth')
bestloss = 9999999999
for epoch in range(CONFIG['epochs']):
model.train()
trainloss = 0.0
for data in trainloader:
left_eyes, right_eyes, labels = data
left_eyes = left_eyes.to(device)
right_eyes = right_eyes.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(left_eyes, right_eyes)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
trainloss += loss.item()
valloss = 0.0
total = 0
correct = 0
model.eval()
for data in valloader:
with torch.no_grad():
left_eyes, right_eyes, labels = data
left_eyes = left_eyes.to(device)
right_eyes = right_eyes.to(device)
labels = labels.to(device)
outputs = model(left_eyes, right_eyes)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
valloss += loss.item()
trainloss /= train_batches
valloss /= val_batches
acc = correct / total
if valloss < bestloss:
bestloss = valloss
torch.save(model.state_dict(), best_ckpt)
torch.save(model.state_dict(), last_ckpt)
print_str = f'EPOCH: {epoch + 1}, TRAIN LOSS: {trainloss:.4f}, '
print_str += f'VAL LOSS: {valloss:.4f}, VAL ACCURACY: {acc:.3f}'
print(print_str)
if __name__ == '__main__':
main()