-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcddmex.m
176 lines (174 loc) · 6.27 KB
/
cddmex.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
%==========================================================================
% Help file for CDDMEX
%
% CDDMEX is a Matlab MEX file interface (authors: Mato Baotic, Fabio Torrisi),
% obtained by linking CDD library CDDLIB-093 (author: Komei Fukuda), which
% allows calls to some of CDD functions from within MATLAB.
%
% CDD is a software package written by K. Fukuda which boasts a wide array
% of efficient algorithms for many polytope manipulations as well as a fast
% LP solver. The full CDD library is free and availible from:
% http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
%
% Version: cddmex v1.0
% cddlib v0.93
%
% See the bottom of this file for more details.
%==========================================================================
%
% Syntax: outstruct=cddmex(action,instruct)
%
% action: 'hull' Convex hull of a V polyhedron
% 'extreme' Vertex/ray enumeration of an H polyhedron
% 'reduce_h' Minimal H representation (of an H polyhedron)
% 'reduce_v' Minimal V representation (of a V polyhedron)
% 'solve_lp' Solve a Linear Program using Criss-Cross method
% 'solve_lp_DS' Solve a Linear Program using Dual-Simplex method
% 'version' Version of the mex function
%
% Further info: see CDDMEX.C
%
% Not documented functions:
% 'copy_v' Simple copy of an H polyhedron
% 'copy_h' Simple copy of a V polyhedron
% 'v_hull_extreme' ???
% 'adj_extreme' Extreme points and adjecancy list of an H polyhedron
% 'find_interior' Interior point of an H polyhedron
%
% Not compiled functions:
% 'adjecancy' Adjacency list of a V polyhedron
% Note that V has to be in a minimal representation!
%
%
% Example: Find the extreme points/rays of P={x: A1*x=B1, A2*x<=B1}
%
% A1=[1 1 1];B1=[1];
% A2=[eye(3);-eye(3)];B2=[1;1;1;2;2;2];
% H=struct('A',[A1;A2],'B',[B1;B2],'lin',(1:size(B1,1))');
% % H.lin=indices of equality constraints
% V=cddmex('extreme',H);
% % The rows of V.V are the extreme points of P
%
% Example: Find the convex hull of v1,v2,v3
%
% V=struct('V',[v1';v2';v3']);
% H=cddmex('hull',V);
%
% Example: Find minimal H representation
%
% A1=[-1 0; 0 -1; 1 0; 0 1; 1 1];B1=[0;0;1;1;1];
% H1=struct('A',A1,'B',B1);
% [Hred]=cddmex('reduce_h',H1);
% % Hred.A * x <= Hred.B is a minimal H representation
% [Hred,ind_redrows]=cddmex('reduce_h',H1);
% % ind_redrows are the indices of redundant rows
% % Note: if H1 is empty polyhedron, then Hred
% % containes irreducibly incosistent set (IIS)
%
% Example: Find minimal V representation
%
% V1=[0 0; 0 1; 1 0; 1 1; 0.2 0.8; 0.7 0.3];
% V1=struct('V',V1);
% % each row of V1.V is a vertex
% [Vred]=cddmex('reduce_v',V1);
% % Vred.V is a minimal V representation
% [Vred,ind_redvert]=cddmex('reduce_v',V1);
% % ind_redvert are the indices of redundant vertices
%
%
% Example: Solve a Linear Program
% Syntax
% OUT=cddmex('solve_lp',IN)
%
% solves problem
% min IN.obj*x
% x
% s.t. IN.A*x <= IN.B
% IN.A(IN.lin,:) x == IN.B(IN.lin)
%
% where
% IN - input structure
% IN.A - constraints matrix
% IN.B - constraints matrix
% IN.obj - objective function
% IN.lin - indices of equality constraints
%
% OUT - structure with solution (similiar to lpsolve)
% OUT.xopt - primal solution
% OUT.lambda - dual solution
% OUT.how - Fukuda's code for LP solution status
% 0 = dd_LPSundecided,
% 1 = dd_Optimal
% 2 = dd_Incosistent
% 3 = dd_DualIncosistent
% 4 = dd_StrucIncosistent
% 5 = dd_StrucDualIncosistent
% 6 = dd_Unbounded
% 7 = dd_DualUnbounded
% OUT.objlp - optimal value
%
% Note: CrissCross algorithm is used when solving LP.
%
% Example
% objective=[-1 1];
% A1=[1 1; -1 0; 0 -1];
% B1=[1; 0; 0];
% IN=struct('obj',objective,'A',A1,'B',B1);
%
% OUT = cddmex('solve_lp',IN);
%
% OUT =
% xopt: [1 0]
% lambda: [-1 0 -2]
% how: 1
% objlp: -1
%
%
% Note: the projection function is only available in CDDMEX.M. A projection
% can be obtained here by (1) vertex enumeration, (2) projection of vertices,
% (3) hull of projected vertices. Example:
%
% H=struct('A',A1,'B',B1);
% V=cddmex('extreme',H);
% Vproj.V=V.V(:,1:2); % Project over the first two coordinates
% Hproj=cddmex('hull',Vproj); % Get the projection
%
%
%==============================================================================
%
% /* The cdd library cddlib-093a was written by
% Komei Fukuda, fukuda@ifor.math.ethz.ch
% Version 0.93, August 11, 2003
% Standard ftp site: ftp.ifor.math.ethz.ch, Directory: pub/fukuda/cdd
% */
%
% /* cddlib.c : C-Implementation of the double description method for
% computing all vertices and extreme rays of the polyhedron
% P= {x : b - A x >= 0}.
% Please read COPYING (GNU General Public Licence) and
% the manual cddlibman.tex for detail.
% */
%
% /* This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
% */
%===============================================================================
%
% History:
% cddmex.c v0.1, An initial Matlab MEX wrapper for cdd library written by
% Fabio Torrisi (torrisi@control.ee.ethz.ch) and
% Mato Baotic (baotic@control.ee.ethz.ch),
% Zurich, December 2002.
%
% cddmex.c v1.0, Revision update by Mato Baotic, Zurich, October 2003.