-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_unused.py
98 lines (82 loc) · 3.17 KB
/
dataset_unused.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import cv2
import torch
import random
import numpy as np
import pandas as pd
from PIL import Image
from skimage import transform, io
from transforms_unused import ToTensor_Landmark
from torchvision import transforms
class FaceLandmark_Dataset():
def __init__(self, input_dir, target_dir, sz, transform, use_image_transformations = True):
self.input_dir = input_dir
self.target_dir = target_dir
self.sz = sz
self.use_image_transformations = use_image_transformations
self.landmark_name_list = []
for file in os.listdir(target_dir):
if(file.endswith('.txt')):
self.landmark_name_list.append(os.path.join(target_dir, file))
# gets PIL as input
self.transform = transform
# gets PIL as input, only effects image (should output a PIL of sz*sz)
self.image_transformations = transforms.Compose([
transforms.ColorJitter(brightness = 0.5, contrast = 0.3, saturation = 0.05, hue = 0.1)
])
# gets PIL as input, effects both image & target
self.to_tensor = ToTensor_Landmark(self.sz)
# gets Tensor as input, only effects image
self.normalization = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
def __len__(self):
return len(self.landmark_name_list)
def __getitem__(self, idx):
filename = self.landmark_name_list[idx]
xs, ys = [], []
with open(filename) as f:
for i, l in enumerate(f):
if(i == 0):
imagename = l[:-1]
else:
splits = l.split(',')
x, y = splits[0], splits[1]
xs.append(float(x))
ys.append(float(y))
input_img = Image.open(os.path.join(self.input_dir, imagename))
target_coord = np.array([*xs, *ys])
input_img, target_coord = self.transform((input_img, target_coord))
if(self.use_image_transformations):
input_img = self.image_transformations(input_img)
input_img, target_coord = self.to_tensor((input_img, target_coord))
input_img = self.normalization(input_img)
input_img, target_coord = input_img.float(), target_coord.float()
sample = (input_img, target_coord)
return sample
class FaceDetection_Dataset():
def __init__(self, input_dir, target_csv, sz, transform):
self.input_dir = input_dir
self.target_csv = target_csv
self.sz = sz
self.df = pd.read_csv(target_csv)
self.transform = transform
self.filenames = self.df['fn']
self.point1 = self.df['p1']
self.point2 = self.df['p2']
# gets PIL as input, effects both image & target
self.to_tensor = ToTensor_Landmark(self.sz)
# gets Tensor as input, only effects image
self.normalization = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
filename = self.filenames[idx]
p1 = self.point1[idx]
p2 = self.point2[idx]
input_img = Image.open(os.path.join(self.input_dir, filename))
point = np.array([float(p1.split(', ')[0][1:]), float(p1.split(', ')[1][:-1]), float(p2.split(', ')[0][1:]), float(p2.split(', ')[1][:-1])])
input_img, target_coord = self.transform((input_img, point))
input_img, target_coord = self.to_tensor((input_img, target_coord))
input_img = self.normalization(input_img)
input_img, target_coord = input_img.float(), target_coord.float()
sample = (input_img, target_coord)
return sample