-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMergeSort4.agda
114 lines (98 loc) · 4.19 KB
/
MergeSort4.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{-# OPTIONS --sized-types #-}
open import Data.Sum renaming (_⊎_ to _∨_)
module MergeSort4 {A : Set}
(_≤_ : A → A → Set)
(tot≤ : (a b : A) → a ≤ b ∨ b ≤ a) where
open import Level hiding (suc)
open import Size
open import Data.List
open import Function
open import Algebra
open import Algebra.Structures
open import Data.Bool hiding (_≟_;_∨_)
open import Data.Empty
open import Induction
open import Induction.Lexicographic
open import Data.Unit
open import Data.Product
open import Data.Nat hiding (_≤?_;_⊔_;_≟_) renaming (_≤_ to _≤n_)
open import Data.Nat.Properties
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality as PropEq renaming ([_] to [_]i)
open import Permutation A
data Bound (A : Set) : Set where
bot : Bound A
val : A → Bound A
data LeB : Bound A → Bound A → Set where
lebx : {b : Bound A} → LeB bot b
lexy : {a b : A} → a ≤ b → LeB (val a) (val b)
data OList : {ι : Size} → Bound A → Set where
onil : {ι : Size}{l : Bound A}
-- --------------------------------
→ OList {↑ ι} l
:< : {ι : Size}{l : Bound A}(x : A){l≤x : LeB l (val x)} → OList {ι} (val x)
-- -----------------------------------------------------------------------------------------------
→ OList {↑ ι} l
data ListN : {ι : Size} → Set where
[] : {ι : Size} → ListN {↑ ι}
_∷_ : {ι : Size} → A → ListN {ι} → ListN {↑ ι}
forgetO : {l : Bound A} → OList l → List A
forgetO onil = []
forgetO (:< x xs) = x ∷ forgetO xs
forgetN : ListN → List A
forgetN [] = []
forgetN (x ∷ xs) = x ∷ forgetN xs
forgetNp : {ι ι′ : Size} → ListN {ι} × ListN {ι′} → List A × List A
forgetNp (xs , ys) = forgetN xs , forgetN ys
deal : {ι : Size}(xs : ListN {ι}) → Σ (ListN {ι} × ListN {ι}) (λ p → forgetN xs ∼p' forgetNp p)
deal [] = ([] , []) , ∼[]r []
deal (x ∷ []) = (x ∷ [] , []) , ∼[]l (x ∷ [])
deal (x ∷ y ∷ xs) with deal xs
... | (ys , zs) , xs∼ys,zs = (x ∷ ys , y ∷ zs) , ∼xl (∼xr xs∼ys,zs)
merge : {ι ι′ : Size}{l : Bound A}(xs : OList {ι} l)(ys : OList {ι′} l) → Σ (OList l) (λ zs → forgetO zs ∼p' (forgetO xs , forgetO ys))
merge onil l = l , ∼[]r (forgetO l)
merge l onil = l , ∼[]l (forgetO l)
merge (:< x {l≤x = l≤x} xs)
(:< y {l≤x = l≤y} ys)
with tot≤ x y
... | inj₁ x≤y = (:< x {l≤x = l≤x} zs) ,
∼xl hi
where zs = proj₁ (merge xs (:< y {l≤x = lexy x≤y} ys))
hi = proj₂ (merge xs (:< y {l≤x = lexy x≤y} ys))
... | inj₂ y≤x = (:< y {l≤x = l≤y} ws) ,
∼xr hi
where ws = proj₁ (merge (:< x {l≤x = lexy y≤x} xs) ys)
hi = proj₂ (merge (:< x {l≤x = lexy y≤x} xs) ys)
mergeSort : {ι : Size}(xs : ListN {↑ ι}) →
Σ (OList bot) (λ ys → forgetN xs ∼ forgetO ys)
mergeSort [] = onil , ∼[]
mergeSort (x ∷ [])
= :< {l = bot} x {l≤x = lebx} onil ,
∼x removeFromHead removeFromHead ∼[] -- auto result
mergeSort (x ∷ (y ∷ xs)) with deal xs
... | (ys , zs) , xs∼ys,zs
with mergeSort (x ∷ ys) | mergeSort (y ∷ zs)
... | ys' , x∷ys∼ys' | zs' , y∷zs∼zs'
with merge ys' zs'
... | ws , ws∼ys',zs'
= ws ,
lemma∼p' (∼xl (∼xr (xs∼ys,zs)))
x∷ys∼ys'
y∷zs∼zs'
ws∼ys',zs'
data Sorted : List A → Set where
nils : Sorted []
singls : (x : A)
-- -----------
→ Sorted [ x ]
conss : (x y : A)(ys : List A) → x ≤ y → Sorted (y ∷ ys)
-- --------------------------------------------------------------
→ Sorted (x ∷ y ∷ ys)
lemma-sort : {l : Bound A}(xs : OList l) → Sorted (forgetO xs)
lemma-sort onil = nils
lemma-sort (:< x onil) = singls x
lemma-sort (:< x (:< y {lexy x≤y} xs))
= conss x y (forgetO xs) x≤y (lemma-sort (:< y {lexy x≤y} xs))
-- Verify Correctness against Sorted specification
lemma-mergeSort-sorted : (xs : ListN) → Sorted (forgetO (proj₁ (mergeSort xs)))
lemma-mergeSort-sorted = lemma-sort ∘ proj₁ ∘ mergeSort