-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_xx_power.py
225 lines (173 loc) · 7.16 KB
/
plot_xx_power.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import xx_power
import time
import healpy as hp
keV2erg = 1.6022e-9
deg2rad = math.pi/180.0
ster2sqdeg = 3282.80635
ster2sqarcmin = ster2sqdeg * 3600.0
ster2sqarcsec = ster2sqdeg * 3600.0 * 3600.0
def read_kolodzig (filename = "../Kolodzig/PS_DATA_LSS_RS09_0.5_2.0_NCR03.txt") :
k, ell, psf, cl, cl_err = np.loadtxt (filename, usecols=(0,1,2,6,7), unpack = True)
cl *= ster2sqdeg
cl_err *= ster2sqdeg
return k, ell, psf, cl, cl_err
def beam (ell, fwhm=12.0) :
#convert fwhm from arcmin to radian
fwhm = math.radians(fwhm/60.0)
sigma = fwhm / (np.sqrt(8.0*np.log(2.0)))
bl = np.exp(ell*(ell+1.0) * sigma**2)
return bl
def power (ell, theta, clump=True) :
eps_f = theta[0]
eps_DM = theta[1]
f_star = theta[2]
S_star = theta[3]
A_C = theta[4]
A_nt = theta[5]
B_nt = theta[6]
gamma_nt = theta[7]
gamma_mod0 = theta[8]
gamma_mod_zslope = theta[9]
x_break = theta[10]
x_smooth = theta[11]
n_nt_mod = theta[12]
clump0 = theta[13]
alpha_clump = theta[14]
beta_clump = theta[15]
gamma_clump = theta[16]
xx_power.set_Flender_params(eps_f*1e-6, eps_DM, f_star, S_star, A_C, A_nt, B_nt, gamma_nt, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod, clump0, alpha_clump, beta_clump, gamma_clump)
#model = xx_power.return_xx_power(ell) # [erg cm^-2 s^-1 str^-1]^2
model_alt= xx_power.return_xx_power_alt(ell) # [erg cm^-2 s^-1 str^-1]^2
return model_alt
def cxb (theta) :
eps_f = theta[0]
eps_DM = theta[1]
f_star = theta[2]
S_star = theta[3]
A_C = theta[4]
A_nt = theta[5]
B_nt = theta[6]
gamma_nt = theta[7]
gamma_mod0 = theta[8]
gamma_mod_zslope = theta[9]
x_break = theta[10]
x_smooth = theta[11]
n_nt_mod = theta[12]
clump0 = theta[13]
alpha_clump = theta[14]
beta_clump = theta[15]
gamma_clump = theta[16]
xx_power.set_Flender_params(eps_f*1e-6, eps_DM, f_star, S_star, A_C, A_nt, B_nt, gamma_nt, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod, clump0, alpha_clump, beta_clump, gamma_clump)
return (xx_power.return_total_xsb())
def read_data (filename) :
ell = []
cl = []
var = []
with open(filename,'r') as f:
f.readline()
for line in f:
cols = line.split(' ')
ell.append(float(cols[0]))
cl.append(float(cols[1]))
var.append(float(cols[2]))
ell = np.array(ell)
cl = np.array(cl)
var = np.array(var)
return ell, cl, var
def main ():
# set cosmology and linear power spectrum
'''
H0=70.0
Omega_M=0.279000
Omega_b=0.046100
w0=-1.000000
Omega_k=0.000000
n_s=0.972000
inputPk="../input_pk/wmap9_fid_matterpower_z0.dat"
nH = 2.4e21
opt = 1
'''
H0=67.32117
Omega_M=0.3158
Omega_b=0.0490
w0=-1.000000
Omega_k=0.000000
n_s=0.96605
inputPk="../input_pk/planck_2018_test_matterpower.dat"
nH = 0.0
opt = 1
xx_power.init_cosmology(H0, Omega_M, Omega_b, w0, Omega_k, n_s, nH, inputPk, opt)
ell = 10.**np.linspace(np.log10(10.),np.log10(1.e4),31)
theta_fid = [4.0, 3.e-5 ,0.0250,0.120000,1.000000,0.180000,0.800000,0.500000,0.10000,1.720000,0.195000,0.010000,0.800000, 0.2, 1.0, 6.0, 3.0]
param_ind_dict = {'eps_f':0, 'eps_DM':1, 'f_star':2, 'S_star':3, 'A_C':4, 'alpha_nt':5, 'n_nt':6, 'beta_nt':7, 'gamma_mod0':8, 'gamma_mod_zslope':9, 'x_break':10, 'x_smooth':11, 'n_nt_mod':12, 'clump0':13, 'alpha_clump':14, 'beta_clump':15, 'gamma_clump':16}
param_label_dict = {'eps_f':r'$\epsilon_f$', 'eps_DM':r'$\epsilon_{DM}$', 'f_star':r'$f_\star$', 'S_star':r'$S_\star$', 'A_C':r'$A_C$','alpha_nt':r'$\alpha_{nt}$', 'n_nt':r'$n_{nt}$', 'beta_nt':r'$\beta_{nt}$', 'gamma_mod0':r'$\Gamma_0$', 'gamma_mod_zslope':r'$\beta_\Gamma$', 'n_nt_mod':'$n_{nt,mod}$', 'clump0':r'$C_0$', 'alpha_clump':r'$\alpha_C$','beta_clump':r'$\beta_{C}$', 'gamma_clump':r'$\gamma_{C}$'}
#rosat_ell, rosat_cl, rosat_var = read_data("../ROSAT/rosat_R4_R7_counts.txt")
rosat_ell, rosat_cl, rosat_var = read_data("../ROSAT/rosat_R4_R7_unabsorbed.txt")
#rosat_cl *= rosat_ell*(rosat_ell+1.)/(2.0*math.pi)
rosat_cl_err = np.sqrt(rosat_var)
#rosat_cl_err *= rosat_ell*(rosat_ell+1.)/(2.0*math.pi)
k_k, ell_k, beam_k, cl_k, cl_k_err = read_kolodzig ()
cl_k /= beam_k
#cl_k *= ell_k*(ell_k+1)/(2.0*math.pi)
#params = [ 'eps_f', 'f_star', 'S_star', 'alpha_nt', 'n_nt', 'beta_nt', 'gamma_mod0', 'gamma_mod_zslope', 'clump0', 'alpha_clump', 'beta_clump', 'gamma_clump' ]
params = [ 'eps_f', 'f_star', 'S_star', 'clump0', 'alpha_clump', 'beta_clump', 'gamma_clump', 'gamma_mod0' ]
#params = [ 'gamma_mod0' ]
param_values = {
#'eps_f':[4.0 ],
'eps_f':[2.0, 4.0, 6.0, 8.0],
'f_star':[0.015, 0.02, 0.025, 0.03],
'S_star':[0.06, 0.12, 0.24, 0.48],
'clump0':[0.1, 1.0, 3.0, 10.0],
'alpha_clump':[0.05, 1.0, 2.0, 4.0],
'beta_clump':[0.05, 1.0, 2.0, 4.0],
'gamma_clump':[2.0, 4.0, 8.0, 10.0],
'gamma_mod0':[-0.1, 0.1, 1.0, 1.6667]
}
for param in params :
param_ind = param_ind_dict[param]
param_val_list = param_values[param]
color_list = ['C0', 'C1', 'C2', 'C3']
ls_list = [':','-','--', '-.']
f = plt.figure( figsize=(4,4) )
ax = f.add_axes([0.21,0.16,0.75,0.75])
#ax.errorbar(rosat_ell, rosat_cl, yerr = rosat_cl_err, color='k', fmt='o', label=r"ROSAT", markersize = 3)
#ax.errorbar(ell_k, cl_k, yerr = cl_k_err, label=r'Chandra', color='r', fmt='+', markersize=3)
cl_list = []
for counter ,param_val in enumerate(param_values[param]) :
theta = theta_fid.copy()
theta[param_ind] = param_val
print(theta[param_ind])
start = time.time()
cl = power (ell, theta)
end = time.time()
print("Elapsed time: %s" % (end - start))
#cl *= ell*(ell+1)/(2.0*math.pi)
#psn = psn*ell*(ell+1)/(2.0*math.pi)
#cl_total *= ell*(ell+1)/(2.0*math.pi)
#cl_list.append(cl)
label_str = param_label_dict[param]+r'$= %.3f $'% (param_val)
#if param == 'eps_f' :
# label_str = param_label_dict[param]+r'$= %.1f$'% (param_val)
#if param == 'clump0' :
# label_str = param_label_dict[param]+r'$= %.1f$'% (param_val+1)
ax.plot (ell, cl, ls = '--', color=color_list[counter], label=label_str)
ax.set_xlim ( 30, 1e4 )
ax.set_ylim ( 1e-25, 1e-19)
ax.set_xlabel(r'$\ell$')
#ax.set_ylabel(r'$\ell(\ell+1)C_{\ell}^{xx}/2\pi\,[{\rm cts^2 s^{-2}arcmin^{-4}}]$')
#ax.set_ylabel(r'$C_{\ell}\,[{\rm erg^{2}s^{-2}cm^{-4}sr^{-2}}]$')
ax.set_ylabel(r'$C_{\ell}\,[{\rm ergs^{2}s^{-2}cm^{-4}sr^{-2}}]$')
ax.set_xscale('log')
ax.set_yscale('log')
ax.legend(loc='lower left', prop={'size': 10})
#outname = '../plots/'+param+'_xx_power.pdf'
outname = param+'_xx_power.pdf'
f.savefig(outname)
f.clf()
#print (cxb(theta_fid))
if __name__ == "__main__" :
main()