-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_emcee.py
286 lines (231 loc) · 8.82 KB
/
run_emcee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
# coding: utf-8
import math
import os, sys, time, logging
import numpy as np
import pandas as pd
import xx_power
import emcee
import datetime
from emcee.utils import MPIPool
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# setup output directory
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
flux_lim = 3.86e-13
if rank == 0:
now = datetime.datetime.now()
dirname = "../halo_model_Flender/MCMC/test/{0:%Y-%m-%d}".format(now)
if os.path.exists(dirname) == False:
os.mkdir(dirname)
else:
print("Warning: directory %s already exists" % dirname)
flag = True
i = 1
while flag:
dirname_try = dirname + "_%s" % i
i += 1
if os.path.exists(dirname_try):
print("Warning: directory %s already exists" % dirname_try)
else:
flag = False
dirname = dirname_try
os.mkdir(dirname)
#config["output"]["directory"] = dirname
print("output directory: %s" % dirname)
#comm.send(dirname, dest=1, tag=11)
else:
dirname = None #comm.recv(source=0, tag=11)
dirname = comm.bcast(dirname, root=0)
# setup logger
filename_log = "mcmc_log"
logging.basicConfig(filename=os.path.join(dirname, filename_log), level=logging.DEBUG)
# set cosmology and linear power spectrum
H0=70.000000
Omega_M=0.279000
Omega_b=0.046100
w0=-1.000000
Omega_k=0.000000
n_s=0.972000
inputPk="../input_pk/wmap9_fid_matterpower_z0.dat"
xx_power.init_cosmology(H0, Omega_M, Omega_b, w0, Omega_k, n_s, inputPk)
def lnlike(theta, x, y, invcov):
'''
double alpha0; // fiducial : 0.18
double n_nt; // fiducial : 0.80
double beta; // fiducial : 0.50
double eps_f; // fiducial : 3.97e-6
double eps_DM; // fiducial : 0.00
double f_star; // fiducial : 0.026
double S_star; // fiducial : 0.12
double A_C; // fiducial : 1.00
double gamma_mod0; // fiducial : 0.10
double gamma_mod_zslope; // fiducial : 1.72
double x_break; // fiducial : 0.195
double x_smooth; // fiducial : 0.01
double n_nt_mod; // fiducial : 0.80
'''
#alpha0, n_nt, beta, eps_f, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod = theta
#xx_power.set_Flender_params(alpha0, n_nt, beta, eps_f*1e-6, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod)
#eps_f, f_star, S_star, gamma_mod0, gamma_mod_zslope, clump0, clump_zslope = theta
eps_f, f_star, S_star, clump0, clump_zslope = theta
#fix DM profile
eps_DM = 0.006
A_C = 1.0
#fix non-thermal pressure term
alpha0 = 0.18
n_nt = 0.80
beta = 0.50
x_smooth = 0.01
n_nt_mod = 0.80
x_break = 0.195
gamma_mod0 = 0.10
gamma_mod_zslope = 1.72
#clumping terms
#clump0 = 0.0
#clump_zslope = 0.0
x_clump = 1.23
alpha_clump1 = 0.88
alpha_clump2 = 3.85
xx_power.set_Flender_params(alpha0, n_nt, beta, eps_f*1e-6, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod, clump0, clump_zslope, x_clump, alpha_clump1, alpha_clump2)
model = xx_power.return_xx_power(x,flux_lim) # [erg cm^-2 s^-1 str^-1]^2
diff = np.array(y-model, dtype=np.float64)
lnl = -0.5*np.dot(diff, np.dot(invcov, np.transpose(diff)))
return lnl
def lnprior(theta):
#eps_f, f_star, S_star, gamma_mod0, gamma_mod_zslope, clump0, clump_zslope = theta
eps_f, f_star, S_star, clump0, clump_zslope = theta
# see https://arxiv.org/pdf/1610.08029.pdf
#if 0.1 <= eps_f <= 10.0 and 0.0 <= eps_DM <= 0.10 and 0.020 <= f_star <= 0.032 and 0.01 <= S_star <= 1.0 and 0.1 <= A_C <= 3.0 and 0.01 <= gamma_mod0 <= 0.30 and 0.10 <= gamma_mod_zslope <= 3.0 :
#if 0.1 <= eps_f <= 10.0 and 0.020 <= f_star <= 0.032 and 0.01 <= S_star <= 1.0 and 0.01 <= gamma_mod0 <= 0.30 and 0.10 <= gamma_mod_zslope <= 3.0 and 0.0 <= clump0 <= 2.0 and -1.0 <= clump_zslope <= 1.0 :
if 0.1 <= eps_f <= 10.0 and 0.020 <= f_star <= 0.032 and 0.01 <= S_star <= 1.0 and 0.0 <= clump0 <= 2.0 and -1.0 <= clump_zslope <= 1.0 :
return 0.0
else:
return -np.inf
def lnprob(theta, x, y, invcov):
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + lnlike(theta, x, y, invcov)
# read data
'''
file="dvec.dat"
df = pd.read_csv(file, delim_whitespace=True, header=None)
df.columns=['ell', 'cl_xx']
x = np.array(df['ell'])
y = np.array(df['cl_xx'])
'''
def read_data (filename) :
ell = []
cl = []
var = []
with open(filename,'r') as f:
f.readline()
for line in f:
cols = line.split(' ')
ell.append(float(cols[0]))
cl.append(float(cols[1]))
var.append(float(cols[2]))
ell = np.array(ell)
cl = np.array(cl)
var = np.array(var)
return ell, cl, var
ell,cl,var = read_data('../ROSAT/rosat_R4_R7_mask_hfi_R2_small_ell.txt')
icov = np.zeros((var.size,var.size))
for i in range(var.size) :
icov[i,i] = 1.0/var[i]
def lnprob_global(theta):
lp = lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + lnlike(theta, ell, cl, icov)
#initial paramaters for MCMC
#pinit = np.array([1.0,0.0050000,0.026000,0.120000,1.000000,0.100000,1.720000])
pinit = np.array([5.0,0.026000,0.120000,0.67,0.0])
# chain will be saved every nstep. In total nbunch * nstep samplings.
nbunch = 5000
nstep = 10
#nwalkers = (size-1)*2 # (total_number_of_cores - 1)*2, this should be equal to ndim x integer
nwalkers = 70 # (total_number_of_cores - 1)*2, this should be equal to ndim x integer
pool = MPIPool(loadbalance=True)
if not pool.is_master():
pool.wait()
sys.exit(0)
# run MCMC
ndim = pinit.size
#sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(ell,cl,icov), pool=pool)
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_global, pool=pool)
start = time.time()
for i in range(nbunch):
if i == 0:
pos = [pinit + 1e-4*np.random.randn(ndim) for j in range(nwalkers)]
else :
pos = sampler.chain[:,-1,:]
sampler.run_mcmc(pos, nstep)
chains="chains_"+str(i)
filename_bunch_chains = os.path.join(dirname, chains)
np.save(filename_bunch_chains, sampler.chain)
logging.info("%s/%s bunch completed. File written in %s" % (i+1, nbunch, filename_bunch_chains))
lnp="lnp_"+str(i)
filename_bunch_lnp = os.path.join(dirname, lnp)
np.save(filename_bunch_lnp, sampler.lnprobability)
logging.info("%s/%s bunch completed. File written in %s" % (i+1, nbunch, filename_bunch_lnp))
end = time.time()
logging.info("Elapsed time: %s" % (end - start))
pool.close()
'''
nvec=y.size
file="invcov.dat"
df = pd.read_csv(file, delim_whitespace=True, header=None)
df.columns=['icov']
icov = np.array(df['icov'])
icovtd = icov.reshape(nvec, nvec)
'''
'''
# generate test data
I_E = 1.478585e+01 # X-ray mean intensity [cm^-2 s^-1 str^-1]
A_eff = 500.0 # effective area [cm^2]
T_obs = 4.0 # observational time [year]
sigma_b = 15.0 # beam size [arcsec]
sky_area = 10000.0 # sky coverage [sq.degs]
T_obs = T_obs * 365. * 24. * 60.0 * 60.0 # in second
sigma_b = sigma_b / 60.0 / 60.0 * np.pi /180.0 # in radian
fsky = sky_area / 41252.96
lmin=100
lmax=10000
nbin=10
dlnell = np.log(lmax/lmin)/nbin
lnell = np.arange(start=np.log(lmin), stop=np.log(lmax), step=dlnell , dtype='float64')
ell = np.exp(lnell)
p_data = np.array([0.180000, 0.800000, 0.500000, 1.00, 0.0050000, 0.026000, 0.120000, 1.000000, 0.100000, 1.720000, 0.195000, 0.010000, 0.800000])
s_data = np.array([I_E, A_eff, T_obs, sigma_b, dlnell, fsky])
def data_and_cov(x, theta, theta_n):
alpha0, n_nt, beta, eps_f, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod = theta
I_E, A_eff, T_obs, sigma_b, dlnell, fsky = theta_n
xx_power.set_Flender_params(alpha0, n_nt, beta, eps_f*1e-6, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod, clump0, clump_zslope, x_clump, alpha_clump1, alpha_clump2)
fac = (41252.96) * (60.0*60.0) * (60.0*60.0) / (4.*np.pi) # arcsec^2/str
data = xx_power.return_xx_power(x) # [ergs cm ^-2 s^-1 str^-2]^2
#N_photon = I_E * A_eff * T_obs # photon/str
#I_E = I_E / fac # cm^-2 s^-1 arcsec^-2
#data_n = I_E * I_E / N_photon
icov = np.zeros((x.size, x.size))
for i in range(x.size):
window = np.exp(-x[i]*x[i]*sigma_b*sigma_b/2.0)
Nmode = (2*x[i]+1)*x[i]*dlnell*fsky
cov = 2.0*(data[i]+data_n/window/window)*(data[i]+data_n/window/window)/Nmode
# add statistical noise
mu, sigma = 0.0, np.sqrt(cov)
stat_n = np.random.normal(mu, sigma, 1)
data[i] = data[i] + stat_n
icov[i,i] = 1./cov
return data, icov
'''
#x = np.array(ell)
#y, icovtd = data_and_cov(x, p_data, s_data)
#if rank == 0:
# print (x, y)
# print (icovtd)