-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_emcee3_conv_fixed.py
268 lines (218 loc) · 7.58 KB
/
run_emcee3_conv_fixed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python
# coding: utf-8
import math
import os, sys, time, logging
import numpy as np
import pandas as pd
import xx_power
import emcee
import datetime
from schwimmbad import MPIPool
from mpi4py import MPI
import cProfile
#from multiprocessing import Pool
os.environ["OMP_NUM_THREADS"] = "1"
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
if rank == 0 :
now = datetime.datetime.now()
dirname = "../halo_model_Flender/MCMC/test/{0:%Y-%m-%d}".format(now)
#dirname = "../halo_model_Flender/MCMC/test/2019-06-07"
if os.path.exists(dirname) == False:
os.mkdir(dirname)
else:
print("Warning: directory %s already exists" % dirname)
flag = False
i = 1
while flag:
dirname_try = dirname + "_%s" % i
i += 1
if os.path.exists(dirname_try):
print("Warning: directory %s already exists" % dirname_try)
else:
flag = False
dirname = dirname_try
os.mkdir(dirname)
#config["output"]["directory"] = dirname
print("output directory: %s" % dirname)
#comm.send(dirname, dest=1, tag=11)
else :
dirname = None #comm.recv(source=0, tag=11)
dirname = comm.bcast(dirname, root=0)
# setup logger
filename_log = "mcmc_log"
logging.basicConfig(filename=os.path.join(dirname, filename_log), level=logging.DEBUG)
# set cosmology and linear power spectrum
'''
H0=70.000000
Omega_M=0.279000
Omega_b=0.046100
w0=-1.000000
Omega_k=0.000000
n_s=0.972000
inputPk="../input_pk/wmap9_fid_matterpower_z0.dat"
nH = 2.45e21
'''
H0=67.32117
Omega_M=0.3158
Omega_b=0.0490
w0=-1.000000
Omega_k=0.000000
n_s=0.96605
inputPk="../input_pk/planck_2018_test_matterpower.dat"
nH = 2.45e21
opt = 1
xx_power.init_cosmology(H0, Omega_M, Omega_b, w0, Omega_k, n_s, nH, inputPk, opt)
def beam (ell, fwhm=12.0) :
#convert fwhm from arcmin to radian
fwhm = math.radians(fwhm/60.0)
sigma = fwhm / (np.sqrt(8.0*np.log(2.0)))
bl = np.exp(ell*(ell+1.0) * sigma**2)
return bl
def lnlike(theta, x, y, invcov):
'''
double alpha0; // fiducial : 0.18
double n_nt; // fiducial : 0.80
double beta; // fiducial : 0.50
double eps_f; // fiducial : 3.97e-6
double eps_DM; // fiducial : 0.00
double f_star; // fiducial : 0.026
double S_star; // fiducial : 0.12
double A_C; // fiducial : 1.00
double gamma_mod0; // fiducial : 0.10
double gamma_mod_zslope; // fiducial : 1.72
double x_break; // fiducial : 0.195
double x_smooth; // fiducial : 0.01
double n_nt_mod; // fiducial : 0.80
'''
#alpha0, n_nt, beta, eps_f, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod = theta
#xx_power.set_Flender_params(alpha0, n_nt, beta, eps_f*1e-6, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod)
#eps_f, f_star, S_star, gamma_mod0, gamma_mod_zslope, clump0, clump_zslope = theta
clump0, alpha_clump, beta_clump, gamma_clump = theta
eps_f = 3.97
f_star = 0.026
clump0 = 10**clump0
S_star = 0.12
alpha_clump = 10**alpha_clump
beta_clump = 10**beta_clump
gamma_clump = 10**gamma_clump
#fix DM profile
eps_DM = 3e-5
A_C = 1.0
#fix non-thermal pressure term
alpha0 = 0.18
n_nt = 0.80
beta = 0.50
x_smooth = 0.01
n_nt_mod = 0.80
x_break = 0.195
gamma_mod0 = 0.10
gamma_mod_zslope = 1.72
#S_star = 0.12
#clumping terms
#clump0 = 0.0
#alpha_clump = 1.0
#beta_clump = 6.0
#gamma_clump = 3.0
xx_power.set_Flender_params(alpha0, n_nt, beta, eps_f*1.e-6, eps_DM, f_star, S_star, A_C, gamma_mod0, gamma_mod_zslope, x_break, x_smooth, n_nt_mod, clump0, alpha_clump, beta_clump, gamma_clump )
model = xx_power.return_xx_power_alt(x) # [erg cm^-2 s^-1 str^-1]^2
#sn = np.full(x.shape, 10.0**log_noise, dtype = np.float64)
#model += sn
#model /= beam(x)
diff = np.array(y-model, dtype=np.float64)
lnl = -0.5*np.dot(diff, np.dot(invcov, np.transpose(diff)))
return lnl
def lnprior(theta):
clump0, alpha_clump, beta_clump, gamma_clump = theta
# see https://arxiv.org/pdf/1610.08029.pdf
#if 0.1 <= eps_f <= 10.0 and 0.0 <= eps_DM <= 0.10 and 0.020 <= f_star <= 0.032 and 0.01 <= S_star <= 1.0 and 0.1 <= A_C <= 3.0 and 0.01 <= gamma_mod0 <= 0.30 and 0.10 <= gamma_mod_zslope <= 3.0 :
#if np.log10(1.09) <= eps_f <= np.log10(8.79) and np.log10(0.023) <= f_star <= np.log10(0.029) and np.log10(0.02) <= S_star <= np.log10(0.22) and np.log10(0.01) <= clump0 <= np.log10(10.0) and np.log10(0.01) <= alpha_clump <= np.log10(3.0) :
if np.log10(0.01) <= clump0 <= np.log10(10.0) and np.log10(0.01) <= alpha_clump <= np.log10(3.0) and np.log10(0.1) <= beta_clump <= np.log10(10.0)and np.log10(0.01) <= gamma_clump <= np.log10(3.0):
return 0.0
return -np.inf
def lnprob(theta, x, y, invcov):
lp = lnprior(theta)
ll = lnlike(theta, x, y, invcov)
if not np.isfinite(lp):
return -np.inf
return lp + ll
def lnprob_global(theta):
lp = lnprior(theta)
ll = lnlike(theta, ell, cl, icov)
if not np.isfinite(lp):
return -np.inf
return lp + ll
def read_data (filename) :
ell = []
cl = []
var = []
with open(filename,'r') as f:
f.readline()
for line in f:
cols = line.split(' ')
ell.append(float(cols[0]))
cl.append(float(cols[1]))
var.append(float(cols[2]))
ell = np.array(ell)
cl = np.array(cl)
var = np.array(var)
return ell, cl, var
if rank == 0 :
filename = '../ROSAT/rosat_R4_R7.txt'
ell,cl,var = read_data(filename)
icov = np.zeros((var.size,var.size))
for i in range(var.size) :
icov[i,i] = 1.0/var[i]
else :
ell = None
cl = None
icov = None
ell = comm.bcast(ell, root = 0)
cl = comm.bcast(cl, root = 0)
icov = comm.bcast(icov, root = 0)
#initial paramaters for MCMC
#eps_f, f_star, S_star, gamma_mod0, gamma_mod_zslope, clump0, clump_zslope, log_noise
pinit = np.array([np.log10(1.0), np.log10(1.0),np.log10(6.0),np.log10(3.0)])
ndim = pinit.size
# chain will be saved every nstep. In total nbunch * nstep samplings.
#nbunch = 25
nstep = 50000
# (total_number_of_cores - 1)*2, this should be equal to ndim x integer
nwalkers = (size-1)*2
#nwalkers = 30
if nwalkers < ndim :
nwalkers = ndim*2
coords = np.random.randn(nwalkers, ndim)
pos = [pinit + 1e-4*np.random.randn(ndim) for j in range(nwalkers)]
# run MCMC
with MPIPool() as pool:
if not pool.is_master() :
pool.wait()
sys.exit(0)
filename_backend = os.path.join(dirname, "backend.h5")
backend = emcee.backends.HDFBackend(filename_backend)
backend.reset(nwalkers, ndim)
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob_global, pool=pool, backend=backend)
index = 0
autocorr = np.empty(nstep)
old_tau = np.inf
start = time.time()
for sample in sampler.sample(pos, iterations=nstep, progress=True):
# Only check convergence every 100 steps
if sampler.iteration % 100:
continue
# Compute the autocorrelation time so far
# Using tol=0 means that we'll always get an estimate even
# if it isn't trustworthy
tau = sampler.get_autocorr_time(tol=0)
autocorr[index] = np.mean(tau)
index += 1
# Check convergence
converged = np.all(tau * 100 < sampler.iteration)
converged &= np.all(np.abs(old_tau - tau) / tau < 0.01)
if converged:
break
old_tau = tau
end = time.time()
print("Elapsed time: %s" % (end - start))