-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaspp.py
35 lines (33 loc) · 1.47 KB
/
aspp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import torch.nn as nn
import torch.nn.functional as F
class Aspp(nn.Module):
def __init__(self, inchannel, outchannel):
super(Aspp, self).__init__()
channel = int(inchannel/4)
self.Conv1 = nn.Conv2d(inchannel, channel, 1)
self.bn1 = nn.BatchNorm2d(channel)
self.Conv3r6 = nn.Conv2d(inchannel, channel, 3, stride=1, padding=6, dilation=6)
self.bn3r6 = nn.BatchNorm2d(channel)
self.Conv3r12 = nn.Conv2d(inchannel, channel, 3, stride=1, padding=12, dilation=12)
self.bn3r12 = nn.BatchNorm2d(channel)
self.Conv3r18 = nn.Conv2d(inchannel, channel, 3, stride=1, padding=18, dilation=18)
self.bn3r18 = nn.BatchNorm2d(channel)
self.pool = nn.AdaptiveAvgPool2d(4)
self.conv_pool = nn.Conv2d(inchannel, channel, 1)
self.bn_conv_pool = nn.BatchNorm2d(channel)
self.relu = nn.ReLU(inplace=True)
self.Conv1f = nn.Conv2d(5*channel, outchannel, 1)
def forward(self, x):
F_h = x.size()[2]
F_w = x.size()[3]
x1 = self.relu(self.bn1(self.Conv1(x)))
x2 = self.relu(self.bn3r6(self.Conv3r6(x)))
x3 = self.relu(self.bn3r12(self.Conv3r12(x)))
x4 = self.relu(self.bn3r18(self.Conv3r18(x)))
x5 = self.relu(self.bn_conv_pool(self.conv_pool(self.pool(x))))
x5 = F.upsample(x5, size=(F_h, F_w), mode='bilinear')
x = torch.cat([x1,x2,x3,x4,x5], 1)
x = self.relu(x)
x = self.Conv1f(x)
return x