-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantumParticlePhysicsPhenomena.py
288 lines (241 loc) · 9.26 KB
/
QuantumParticlePhysicsPhenomena.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
```python
import numpy as np
import scipy.constants as const
import matplotlib.pyplot as plt
class QuantumParticlePhysicsPhenomena:
"""
Comprehensive analysis of quantum and particle physics phenomena
"""
@staticmethod
def neutrino_half_life_analysis(initial_neutrino_count=1e20,
half_life=8.25e14): # seconds
"""
Analyze neutrino decay and half-life
Parameters:
initial_neutrino_count (float): Initial number of neutrinos
half_life (float): Half-life in seconds
Returns:
dict: Neutrino decay characteristics
"""
# Decay constant calculation
decay_constant = np.log(2) / half_life
# Time array for decay analysis
time_points = np.linspace(0, 3 * half_life, 200)
# Decay curve calculation
def decay_curve(t):
"""
Compute remaining neutrino count
"""
return initial_neutrino_count * np.exp(-decay_constant * t)
# Compute remaining neutrinos at different times
remaining_neutrinos = [decay_curve(t) for t in time_points]
return {
'initial_count': initial_neutrino_count,
'half_life': half_life,
'decay_constant': decay_constant,
'time_points': time_points,
'remaining_neutrinos': remaining_neutrinos
}
@staticmethod
def franck_hertz_experiment(accelerating_voltage=4.9):
"""
Simulate Franck-Hertz experiment
Parameters:
accelerating_voltage (float): Electron accelerating voltage
Returns:
dict: Franck-Hertz experiment characteristics
"""
# Mercury atom excitation energy
mercury_excitation_energy = 4.9 # eV
# Electron energy levels
def electron_energy_distribution():
"""
Compute electron energy distribution
"""
# Simplified model of electron energy transfer
electron_energies = []
current_energy = 0
while current_energy < accelerating_voltage:
electron_energies.append(current_energy)
current_energy += mercury_excitation_energy
return electron_energies
# Current-voltage relationship
def current_voltage_relationship():
"""
Compute current variations with voltage
"""
voltages = np.linspace(0, accelerating_voltage * 2, 100)
currents = [
np.sin(v / mercury_excitation_energy * np.pi)
for v in voltages
]
return {
'voltages': voltages,
'currents': currents
}
return {
'accelerating_voltage': accelerating_voltage,
'excitation_energy': mercury_excitation_energy,
'electron_energies': electron_energy_distribution(),
'current_voltage': current_voltage_relationship()
}
@staticmethod
def speed_of_light_measurement(measurement_method='interferometric'):
"""
Analyze speed of light measurement techniques
Parameters:
measurement_method (str): Method of measurement
Returns:
dict: Speed of light measurement characteristics
"""
# Fundamental constants
c = const.c # Speed of light
# Different measurement techniques
measurement_techniques = {
'interferometric': {
'principle': 'Measure light interference patterns',
'precision': 1e-12, # meters
'historical_method': 'Michelson-Morley experiment'
},
'astronomical': {
'principle': 'Use astronomical observations',
'precision': 1e-9, # meters
'historical_method': 'Roemer\'s observation of Jupiter\'s moons'
},
'cavity_resonance': {
'principle': 'Measure electromagnetic cavity resonance',
'precision': 1e-15, # meters
'historical_method': 'Modern laser-based techniques'
}
}
# Selected method details
method_details = measurement_techniques.get(
measurement_method,
measurement_techniques['interferometric']
)
return {
'speed_of_light': c,
'measurement_method': measurement_method,
'method_details': method_details
}
@staticmethod
def x_ray_scattering(photon_energy=10000, # eV
scattering_angle=45): # degrees
"""
X-ray scattering analysis
Parameters:
photon_energy (float): X-ray photon energy in eV
scattering_angle (float): Scattering angle in degrees
Returns:
dict: X-ray scattering characteristics
"""
# Compton scattering calculation
def compton_scattering():
"""
Compute Compton scattering properties
"""
# Electron rest mass
m_e = const.m_e
# Speed of light
c = const.c
# Compton wavelength
compton_wavelength = const.h / (m_e * c)
# Convert photon energy to wavelength
photon_wavelength = (
const.h * const.c /
(photon_energy * const.e)
)
# Compton shift calculation
angle_rad = np.deg2rad(scattering_angle)
compton_shift = compton_wavelength * (
1 - np.cos(angle_rad)
)
return {
'compton_wavelength': compton_wavelength,
'photon_wavelength': photon_wavelength,
'compton_shift': compton_shift
}
# Scattering intensity model
def scattering_intensity():
"""
Compute scattering intensity distribution
"""
angles = np.linspace(0, np.pi, 100)
# Klein-Nishina formula (simplified)
intensities = (1 + np.cos(angles)**2) / 2
return {
'angles': angles,
'intensities': intensities
}
return {
'photon_energy': photon_energy,
'scattering_angle': scattering_angle,
'compton_scattering': compton_scattering(),
'scattering_intensity': scattering_intensity()
}
def visualize_phenomena(self):
"""
Visualize various quantum and particle physics phenomena
"""
plt.figure(figsize=(15, 10))
# Neutrino Decay
plt.subplot(221)
neutrino_results = self.neutrino_half_life_analysis()
plt.plot(
neutrino_results['time_points'],
neutrino_results['remaining_neutrinos']
)
plt.title('Neutrino Decay')
plt.xlabel('Time (s)')
plt.ylabel('Remaining Neutrinos')
# Franck-Hertz Experiment
plt.subplot(222)
franck_results = self.franck_hertz_experiment()
plt.plot(
franck_results['current_voltage']['voltages'],
franck_results['current_voltage']['currents']
)
plt.title('Franck-Hertz Current-Voltage')
plt.xlabel('Voltage')
plt.ylabel('Current')
# Speed of Light Measurement
plt.subplot(223)
c_result = self.speed_of_light_measurement()
plt.bar(['Speed of Light'], [c_result['speed_of_light']])
plt.title('Speed of Light')
plt.ylabel('Meters per Second')
# X-ray Scattering
plt.subplot(224)
x_ray_results = self.x_ray_scattering()
plt.plot(
x_ray_results['scattering_intensity']['angles'],
x_ray_results['scattering_intensity']['intensities']
)
plt.title('X-ray Scattering Intensity')
plt.xlabel('Scattering Angle')
plt.ylabel('Intensity')
plt.tight_layout()
plt.show()
def main():
# Create quantum particle physics phenomena instance
physics_exp = QuantumParticlePhysicsPhenomena()
# Neutrino Half-Life Analysis
print("Neutrino Half-Life Analysis:")
neutrino_results = physics_exp.neutrino_half_life_analysis()
print(f"Half-Life: {neutrino_results['half_life']} seconds")
# Franck-Hertz Experiment
print("\nFranck-Hertz Experiment:")
franck_results = physics_exp.franck_hertz_experiment()
print(f"Excitation Energy: {franck_results['excitation_energy']} eV")
# Speed of Light Measurement
print("\nSpeed of Light Measurement:")
c_result = physics_exp.speed_of_light_measurement()
print(f"Speed of Light: {c_result['speed_of_light']} m/s")
# X-ray Scattering
print("\nX-ray Scattering:")
x_ray_results = physics_exp.x_ray_scattering()
print(f"Photon Energy: {x_ray_results['photon_energy']} eV")
# Visualize phenomena
physics_exp.visualize_phenomena()
if __name__ == "__main__":
main()