-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpreprocess.py
147 lines (135 loc) · 5.28 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import json
import spacy
import os
from tqdm import tqdm
import jieba
import tokenizers
from functools import partial
from multiprocessing import Pool
from multiprocessing.util import Finalize
def tokenize_ch(text):
text = jieba.cut(text.strip(), cut_all=False)
return list(text)
def preprocess_ch(file_name, output_name, skip_answer=False):
'''
preprocess ch data
'''
data = json.load(open(file_name, 'r'))
examples = []
for article in tqdm(data['data']):
# keys: title, paragraphs
for paragraph in article['paragraphs']:
# keys: context, qas
context = paragraph['context']
context_token = tokenize_ch(context)
for qa in paragraph['qas']:
qa_id = qa['id']
q = qa['question']
q_token = tokenize_ch(q)
if skip_answer:
ans_text, ans_text_token, ans_start, ans_end = '', [], -1, -1
else:
ans_text = qa['answers'][0]['text']
ans_text_token = tokenize_ch(ans_text)
ans_start = qa['answers'][0]['answer_start']
ans_end = ans_start + len(ans_text)
assert context[ans_start:ans_end] == ans_text
examples.append({
'id': qa_id,
'context': context,
'context_token': context_token,
'q': q,
'q_token': q_token,
'ans_text': ans_text,
'ans_text_token': ans_text_token,
'ans_start': ans_start,
'ans_end': ans_end
})
json.dump(examples, open(output_name, 'w'))
TOK = None
def init(tokenizer_class, options):
global TOK
TOK = tokenizer_class(**options)
Finalize(TOK, TOK.shutdown, exitpriority=100)
def load_squad(file_name):
data = json.load(open(file_name, 'r'))['data']
output = {'qids': [], 'questions': [], 'answers': [],
'contexts': [], 'qid2cid': []}
for article in data:
for paragraph in article['paragraphs']:
output['contexts'].append(paragraph['context'])
for qa in paragraph['qas']:
output['qids'].append(qa['id'])
output['questions'].append(qa['question'])
output['qid2cid'].append(len(output['contexts']) - 1)
if 'answers' in qa:
output['answers'].append(qa['answers'])
return output
def find_answer(offsets, begin_offset, end_offset):
"""Match token offsets with the char begin/end offsets of the answer."""
start = [i for i, tok in enumerate(offsets) if tok[0] == begin_offset]
end = [i for i, tok in enumerate(offsets) if tok[1] == end_offset]
assert(len(start) <= 1)
assert(len(end) <= 1)
if len(start) == 1 and len(end) == 1:
return start[0], end[0]
def tokenize(text):
"""Call the global process tokenizer on the input text."""
global TOK
tokens = TOK.tokenize(text)
output = {
'words': tokens.words(),
'offsets': tokens.offsets(),
'pos': tokens.pos(),
'lemma': tokens.lemmas(),
'ner': tokens.entities(),
}
return output
def preprocess_squad(file_name, output_name, skip_answer=False):
data = load_squad(file_name)
tokenizer_class = tokenizers.get_class('spacy')
make_pool = partial(Pool, 8, initializer=init)
workers = make_pool(initargs=(tokenizer_class, {'annotators': {'lemma'}}))
q_tokens = workers.map(tokenize, data['questions'])
workers.close()
workers.join()
workers = make_pool(
initargs=(tokenizer_class, {'annotators': {'lemma', 'pos', 'ner'}})
)
c_tokens = workers.map(tokenize, data['contexts'])
workers.close()
workers.join()
examples = []
for idx in range(len(data['qids'])):
question = q_tokens[idx]['words']
qlemma = q_tokens[idx]['lemma']
document = c_tokens[data['qid2cid'][idx]]['words']
offsets = c_tokens[data['qid2cid'][idx]]['offsets']
lemma = c_tokens[data['qid2cid'][idx]]['lemma']
pos = c_tokens[data['qid2cid'][idx]]['pos']
ner = c_tokens[data['qid2cid'][idx]]['ner']
ans_tokens = []
if len(data['answers']) > 0:
for ans in data['answers'][idx]:
found = find_answer(offsets,
ans['answer_start'],
ans['answer_start'] + len(ans['text']))
if found:
ans_tokens.append(found)
examples.append( {
'id': data['qids'][idx],
'question': question,
'document': document,
'offsets': offsets,
'answers': ans_tokens,
'qlemma': qlemma,
'lemma': lemma,
'pos': pos,
'ner': ner,
})
json.dump(examples, open(output_name, 'w'))
if __name__ == '__main__':
#preprocess_ch('CQA_data/train-v1.1.json', 'train.json')
#preprocess_ch('CQA_data/test-v1.1.json', 'test.json', True)
preprocess_squad('squad/train-v1.1.json', 'train_squad.json')
preprocess_squad('squad/dev-v1.1.json', 'dev_squad.json')