-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy path3_lncRNAfilter3_removeProtein.R
214 lines (178 loc) · 13.2 KB
/
3_lncRNAfilter3_removeProtein.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
require(tidyr)
require(dplyr)
require(stringr)
###Looking at BLASTp results
##looking at blastp.outfmt6 tables
novel_I_blastp <- read.table("novel_I_sprot.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
novel_II_blastp <- read.table("novel_II_sprot.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
novel_III_blastp <- read.table("novel_III_sprot.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
intergenic_blastp <- read.table("intergenic_sprot.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
known_lncRNA_blastp <- read.table("known_ncRNA_sprot.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
#parse out column V1 to get gene IDs
novel_I_blastp_temp1=data.frame(str_split_fixed(novel_I_blastp$V1, ":", 4))
novel_I_blastp_bed <- cbind(novel_I_blastp_temp1$X3,novel_I_blastp[,c("V2","V11")])
names(novel_I_blastp_bed)=c("V4","target","sig")
novel_II_blastp_temp1=data.frame(str_split_fixed(novel_II_blastp$V1, ":", 4))
novel_II_blastp_bed <- cbind(novel_II_blastp_temp1$X3,novel_II_blastp[,c("V2","V11")])
names(novel_II_blastp_bed)=c("V4","target","sig")
novel_III_blastp_temp1=data.frame(str_split_fixed(novel_III_blastp$V1, ":", 4))
novel_III_blastp_bed <- cbind(novel_III_blastp_temp1$X3,novel_III_blastp[,c("V2","V11")])
names(novel_III_blastp_bed)=c("V4","target","sig")
intergenic_blastp_temp1=data.frame(str_split_fixed(intergenic_blastp$V1, ":", 4))
intergenic_blastp_bed <- cbind(intergenic_blastp_temp1$X3,intergenic_blastp[,c("V2","V11")])
names(intergenic_blastp_bed)=c("V4","target","sig")
known_lncRNA_blastp_temp1=data.frame(str_split_fixed(known_lncRNA_blastp$V1, ":", 4))
known_lncRNA_blastp_bed <- cbind(known_lncRNA_blastp_temp1$X3,known_lncRNA_blastp[,c("V2","V11")])
names(known_lncRNA_blastp_bed)=c("V4","target","sig")
#write blastp tables into comparable format with hmmersearch results
write.table(novel_I_blastp_bed, "novel_I_blastp.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_II_blastp_bed, "novel_II_blastp.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_III_blastp_bed, "novel_III_blastp.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(intergenic_blastp_bed, "intergenic_blastp.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(known_lncRNA_blastp_bed, "known_ncRNA_blastp.bed", row.names=F, col.names=F, quote=F, sep = "\t")
##look at HMMER PFAM results
novel_I_pfam <- read.table("novel_I_pfam_new.tblout", header=F, stringsAsFactors=F)
novel_II_pfam <- read.table("novel_II_pfam_new.tblout", header=F, stringsAsFactors=F)
novel_III_pfam <- read.table("novel_III_pfam_new.tblout", header=F, stringsAsFactors=F)
intergenic_pfam <- read.table("intergenic_pfam_new.tblout", header=F, stringsAsFactors=F)
known_lncRNA_pfam <- read.table("known_ncRNA_pfam_new.tblout", header=F, stringsAsFactors=F)
###processing hmmsearch .tblout output to be compatible with blastp
novel_I_pfam_temp1=data.frame(str_split_fixed(novel_I_pfam$V1, ":", 4))
novel_I_pfam_bed <- cbind(novel_I_pfam_temp1$X3,novel_I_pfam[,c("V3","V5")])
names(novel_I_pfam_bed)=c("V4","target","sig")
novel_II_pfam_temp1=data.frame(str_split_fixed(novel_II_pfam$V1, ":", 4))
novel_II_pfam_bed <- cbind(novel_II_pfam_temp1$X3,novel_II_pfam[,c("V3","V5")])
names(novel_II_pfam_bed)=c("V4","target","sig")
novel_III_pfam_temp1=data.frame(str_split_fixed(novel_III_pfam$V1, ":", 4))
novel_III_pfam_bed <- cbind(novel_III_pfam_temp1$X3,novel_III_pfam[,c("V3","V5")])
names(novel_III_pfam_bed)=c("V4","target","sig")
intergenic_pfam_temp1=data.frame(str_split_fixed(intergenic_pfam$V1, ":", 4))
intergenic_pfam_bed <- cbind(intergenic_pfam_temp1$X3,intergenic_pfam[,c("V3","V5")])
names(intergenic_pfam_bed)=c("V4","target","sig")
known_lncRNA_pfam_temp1=data.frame(str_split_fixed(known_lncRNA_pfam$V1, ":", 4))
known_lncRNA_pfam_bed <- cbind(known_lncRNA_pfam_temp1$X3,known_lncRNA_pfam[,c("V3","V5")])
names(known_lncRNA_pfam_bed)=c("V4","target","sig")
write.table(novel_I_pfam_bed, "novel_I_pfam_sub.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_II_pfam_bed, "novel_II_pfam_sub.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_III_pfam_bed, "novel_III_pfam_sub.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(intergenic_pfam_bed, "intergenic_pfam_sub.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(known_lncRNA_pfam_bed, "known_ncRNA_pfam_sub.bed", row.names=F, col.names=F, quote=F, sep = "\t")
##looking at blastn.outfmt6 tables
novel_I_blastn <- read.table("novel_I_hg38_cdna.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
novel_II_blastn <- read.table("novel_II_hg38_cdna.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
novel_III_blastn <- read.table("novel_III_hg38_cdna.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
intergenic_blastn <- read.table("intergenic_hg38_cdna.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
known_lncRNA_blastn <- read.table("known_ncRNA_hg38_cdna.outfmt6", header=F, stringsAsFactors=F,sep = "\t")
#parse out column V1 to get gene IDs
novel_I_blastn_temp1=data.frame(str_split_fixed(novel_I_blastn$V1, ":", 4))
novel_I_blastn_bed <- cbind(novel_I_blastn_temp1$X3,novel_I_blastn[,c("V2","V11")])
names(novel_I_blastn_bed)=c("V4","target","sig")
novel_II_blastn_temp1=data.frame(str_split_fixed(novel_II_blastn$V1, ":", 4))
novel_II_blastn_bed <- cbind(novel_II_blastn_temp1$X3,novel_II_blastn[,c("V2","V11")])
names(novel_II_blastn_bed)=c("V4","target","sig")
novel_III_blastn_temp1=data.frame(str_split_fixed(novel_III_blastn$V1, ":", 4))
novel_III_blastn_bed <- cbind(novel_III_blastn_temp1$X3,novel_III_blastn[,c("V2","V11")])
names(novel_III_blastn_bed)=c("V4","target","sig")
intergenic_blastn_temp1=data.frame(str_split_fixed(intergenic_blastn$V1, ":", 4))
intergenic_blastn_bed <- cbind(intergenic_blastn_temp1$X3,intergenic_blastn[,c("V2","V11")])
names(intergenic_blastn_bed)=c("V4","target","sig")
known_lncRNA_blastn_temp1=data.frame(str_split_fixed(known_lncRNA_blastn$V1, ":", 4))
known_lncRNA_blastn_bed <- cbind(known_lncRNA_blastn_temp1$X3,known_lncRNA_blastn[,c("V2","V11")])
names(known_lncRNA_blastn_bed)=c("V4","target","sig")
write.table(novel_I_blastn_bed, "novel_I_blastn.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_II_blastn_bed, "novel_II_blastn.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_III_blastn_bed, "novel_III_blastn.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(intergenic_blastn_bed, "intergenic_blastn.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(known_lncRNA_blastn_bed, "known_ncRNA_blastn.bed", row.names=F, col.names=F, quote=F, sep = "\t")
#read in the remaining transcripts after filter 2
novel_I_bed_f2=read.table("novel_I_f2.bed", header=F, colClasses = "character",sep = "\t")
novel_II_bed_f2=read.table("novel_II_f2.bed", header=F, colClasses = "character",sep = "\t")
novel_III_bed_f2=read.table("novel_III_f2.bed", header=F, colClasses = "character",sep = "\t")
intergenic_bed_f2=read.table("intergenic_f2.bed", header=F, colClasses = "character",sep = "\t")
known_lncRNA_bed_f2=read.table("known_ncRNA_f2.bed", header=F, colClasses = "character",sep = "\t")
#combine all
all_f2_lncRNA <- rbind(novel_I_bed_f2,novel_II_bed_f2,novel_III_bed_f2,intergenic_bed_f2,known_lncRNA_bed_f2)
all_f2_lncRNA = all_f2_lncRNA[!duplicated(all_f2_lncRNA),]
##merge the protein findings
novel_I_P <- rbind(novel_I_blastp_bed,novel_I_pfam_bed,novel_I_blastn_bed)
novel_II_P <- rbind(novel_II_blastp_bed,novel_II_pfam_bed,novel_II_blastn_bed)
novel_III_P <- rbind(novel_III_blastp_bed,novel_III_pfam_bed,novel_III_blastn_bed)
intergenic_P <- rbind(intergenic_blastp_bed,intergenic_pfam_bed,intergenic_blastn_bed)
known_lncRNA_P <- rbind(known_lncRNA_blastp_bed,known_lncRNA_pfam_bed,known_lncRNA_blastn_bed)
######################
#removing duplicates from the two protein searches because they are causing
#problems with anti_join, as is the order of the chrs
novel_I_P_noDups <- novel_I_P[!duplicated(novel_I_P$V4),]
novel_II_P_noDups <- novel_II_P[!duplicated(novel_II_P$V4),]
novel_III_P_noDups <- novel_III_P[!duplicated(novel_III_P$V4),]
intergenic_P_noDups <- intergenic_P[!duplicated(intergenic_P$V4),]
known_lncRNA_P_noDups <- known_lncRNA_P[!duplicated(known_lncRNA_P$V4),]
###########
#merge with TCONS names
novel_I_P_noDups_bed <- merge(novel_I_P_noDups,all_f2_lncRNA,by="V4")
novel_I_P_noDups_bed = novel_I_P_noDups_bed[,colnames(all_f2_lncRNA)]
novel_II_P_noDups_bed <- merge(novel_II_P_noDups,all_f2_lncRNA,by="V4")
novel_II_P_noDups_bed = novel_II_P_noDups_bed[,colnames(all_f2_lncRNA)]
novel_III_P_noDups_bed <- merge(novel_III_P_noDups,all_f2_lncRNA,by="V4")
novel_III_P_noDups_bed = novel_III_P_noDups_bed[,colnames(all_f2_lncRNA)]
intergenic_P_noDups_bed <- merge(intergenic_P_noDups,all_f2_lncRNA,by="V4")
intergenic_P_noDups_bed = intergenic_P_noDups_bed[,colnames(all_f2_lncRNA)]
known_lncRNA_P_noDups_bed <- merge(known_lncRNA_P_noDups,all_f2_lncRNA,by="V4")
known_lncRNA_P_noDups_bed = known_lncRNA_P_noDups_bed[,colnames(all_f2_lncRNA)]
P_noDups_id <-rbind(data.frame(id="novel_I",novel_I_P_noDups_bed),
data.frame(id="novel_II",novel_II_P_noDups_bed),
data.frame(id="novel_III",novel_III_P_noDups_bed),
data.frame(id="intergenic",intergenic_P_noDups_bed),
data.frame(id="known",known_lncRNA_P_noDups_bed))
P_noDups <- data.frame(P_noDups_id[ ,-1])
P_noDups = P_noDups[!duplicated(P_noDups),]
P_noDups[, c("V2")] <- sapply(P_noDups[, c("V2")], as.numeric)
P_noDups <- P_noDups[with(P_noDups, order(V1,V2)), ]
write.table(novel_I_P_noDups, "novel_I_P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_II_P_noDups, "novel_II_P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_III_P_noDups, "novel_III_P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(intergenic_P_noDups, "intergenic_P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(known_lncRNA_P_noDups, "known_ncRNA_P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(P_noDups, "P.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(P_noDups_id, "P_id.bed", row.names=F, col.names=F, quote=F, sep = "\t")
#performing anti_join to get rid of any transcript which had a hit in blastp or hmmsearch && make the f4 outputs into bed files
novel_I_bed <- anti_join(novel_I_bed_f2,novel_I_P_noDups, by="V4")
novel_II_bed <- anti_join(novel_II_bed_f2,novel_II_P_noDups, by="V4")
novel_III_bed <- anti_join(novel_III_bed_f2,novel_III_P_noDups, by="V4")
intergenic_bed <- anti_join(intergenic_bed_f2,intergenic_P_noDups, by="V4")
known_lncRNA_bed <- anti_join(known_lncRNA_bed_f2,known_lncRNA_P_noDups, by="V4")
novel_I_bed[, c("V2")] <- sapply(novel_I_bed[, c("V2")], as.numeric)
novel_II_bed[, c("V2")] <- sapply(novel_II_bed[, c("V2")], as.numeric)
novel_III_bed[, c("V2")] <- sapply(novel_III_bed[, c("V2")], as.numeric)
intergenic_bed[, c("V2")] <- sapply(intergenic_bed[, c("V2")], as.numeric)
known_lncRNA_bed[, c("V2")] <- sapply(known_lncRNA_bed[, c("V2")], as.numeric)
novel_I_bed <- novel_I_bed[with(novel_I_bed, order(V1, V2)), ]
novel_II_bed <- novel_II_bed[with(novel_II_bed, order(V1, V2)), ]
novel_III_bed <- novel_III_bed[with(novel_III_bed, order(V1, V2)), ]
intergenic_bed <- intergenic_bed[with(intergenic_bed, order(V1, V2)), ]
known_lncRNA_bed <- known_lncRNA_bed[with(known_lncRNA_bed, order(V1, V2)), ]
write.table(novel_I_bed, "novel_I_f3.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_II_bed, "novel_II_f3.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(novel_III_bed, "novel_III_f3.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(intergenic_bed, "intergenic_f3.bed", row.names=F, col.names=F, quote=F, sep = "\t")
write.table(known_lncRNA_bed, "known_ncRNA_f3.bed", row.names=F, col.names=F, quote=F, sep = "\t")
#now lets concat. them with labels to make them easier to make figures with later
lncRNA_all_Cat <-rbind(data.frame(id="novel_I",novel_I_bed),
data.frame(id="novel_II",novel_II_bed),
data.frame(id="novel_III",novel_III_bed),
data.frame(id="intergenic",intergenic_bed),
data.frame(id="known",known_lncRNA_bed))
lncRNA_all_Cat <- lncRNA_all_Cat[with(lncRNA_all_Cat, order(V2, V3)), ]
write.table(lncRNA_all_Cat, "lncRNA_f3_IDs", row.names=F, col.names=F, quote=F, sep = "\t")
##now just making a table of f3, sub-divided into the protein coding vs non protein coding found in filter 3
all_ID <-rbind(data.frame(id="novel_I_lncRNA",novel_I_bed),
data.frame(id="novel_I_genes",novel_I_P_noDups_bed),
data.frame(id="novel_II_lncRNA",novel_II_bed),
data.frame(id="novel_II_genes",novel_II_P_noDups_bed),
data.frame(id="novel_III_lncRNA",novel_III_bed),
data.frame(id="novel_III_genes",novel_III_P_noDups_bed),
data.frame(id="intergenic_lncRNA",intergenic_bed),
data.frame(id="intergenic_genes",intergenic_P_noDups_bed),
data.frame(id="known_lncRNA",known_lncRNA_bed),
data.frame(id="known_genes",known_lncRNA_P_noDups_bed))
write.table(all_ID, "all_cats_PandnoP", row.names=F, col.names=F, quote=F, sep = "\t")