Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Semantics aren't loading correctly (Hm3D, Instance Image Nav) #2090

Open
FlightVin opened this issue Oct 16, 2024 · 7 comments
Open

Semantics aren't loading correctly (Hm3D, Instance Image Nav) #2090

FlightVin opened this issue Oct 16, 2024 · 7 comments
Labels
bug Something isn't working solution proposed A tested solution to the issue has been proposed in the comment thread.

Comments

@FlightVin
Copy link

Habitat-Lab and Habitat-Sim versions

Habitat-Lab: master

Habitat-Sim: master

Master branch contains 'bleeding edge' code and should be used at your own risk.

Docs and Tutorials

Did you read the docs? https://aihabitat.org/docs/habitat-lab/ -> Yes

Did you check out the tutorials? https://aihabitat.org/tutorial/2020/ -> Yes

Perhaps your question is answered there. If not, carry on!

Semantics aren't loading correctly

For the sake of brevity, consider the following image showing the data present in the minival set of HM3D:
Pasted image 20241016200316 1

The relevant files that have been listed in README for semantics are present.

However, when I try to access the unique semantic labels here (permalink), I always get either 0 or 3. This is despite me setting the scene dataset correctly here.

I get the following warnings on InstanceImageNav-v1

[20:32:03:831051]:[Warning]:[Metadata] SceneDatasetAttributes.cpp(107)::addNewSceneInstanceToDataset 
: Dataset : 'hm3d_annotated_basis' : Lighting Layout Attributes 'no_lights' specified in Scene Attrib
utes but does not exist in dataset, so creating default.                                             
[20:32:03:831186]:[Warning]:[Scene] SemanticScene.h(328)::checkFileExists : ::loadSemanticSceneDescri
ptor: File/scratch/vineeth.bhat/sg_habitat/data/scene_datasets/hm3d_v0.2/minival/00802-wcojb4TFT35/wc
ojb4TFT35.basis.scndoes not exist.  Aborting load.                                                   
[20:32:03:831202]:[Warning]:[Scene] SemanticScene.cpp(121)::loadSemanticSceneDescriptor : SSD File Na
ming Issue! Neither SemanticAttributes-provided name : `/scratch/vineeth.bhat/sg_habitat/data/scene_d
atasets/hm3d_v0.2/minival/00802-wcojb4TFT35/wcojb4TFT35.basis.scn` nor constructed filename : `/scrat
ch/vineeth.bhat/sg_habitat/data/scene_datasets/hm3d_v0.2/minival/00802-wcojb4TFT35/info_semantic.json
` exist on disk.                                                                                     
[20:32:03:831210]:[Error]:[Scene] SemanticScene.cpp(137)::loadSemanticSceneDescriptor : SSD Load Fail
ure! File with SemanticAttributes-provided name `/scratch/vineeth.bhat/sg_habitat/data/scene_datasets
/hm3d_v0.2/minival/00802-wcojb4TFT35/wcojb4TFT35.basis.scn` exists but failed to load.               
[20:32:04:928962]:[Warning]:[Sim] Simulator.cpp(594)::instanceStageForSceneAttributes : The active sc
ene does not contain semantic annotations : activeSemanticSceneID_ = 0                               
2024-10-16 20:32:05,059 Initializing task InstanceImageNav-v1                                        

Any help would be appreciated. Thanks!

@FlightVin
Copy link
Author

Adding code here (same as the links given above):

Data formation:

"""
Code used to create dataset for pixel goals. Uses latest habitat lab version.
"""

import os
import argparse
import numpy as np
import habitat
from habitat.tasks.nav.shortest_path_follower import ShortestPathFollower
import time
from pathlib import Path
import h5py
from habitat.utils.geometry_utils import quaternion_from_coeff, quaternion_to_list
from utils import *

seed_everything(42)


def main(args):
    config_path = args.config_path
    if not os.path.exists(config_path):
        raise RuntimeError(f"{config_path} does not exist!")

    habitat_config = create_habitat_config(config_path, args)

    env = habitat.Env(habitat_config)
    env.seed(42)
    follower = ShortestPathFollower(env.sim, goal_radius=0.5, return_one_hot=False)

    episode_counter = 0
    time_before_loop = time.time()

    hdf5_file_path = args.save_path

    # create parent directories
    directory_path = Path(hdf5_file_path).parent
    directory_path.mkdir(parents=True, exist_ok=True)

    # Creation loop
    with h5py.File(hdf5_file_path, "w") as hdf:
        while episode_counter < args.num_saved_episodes:
            start_time = time.time()

            try:
                obs = env.reset()
            except Exception as e:
                print(f"An error occurred while resetting environment: {e}")
                continue

            rgb_data, depth_data, pose_data, action_data, normed_target_point_data = (
                [],
                [],
                [],
                [],
                [],
            )
            timesteps = 0

            (
                goal_flag,
                goal_image,
                goal_mask,
                goal_point,
                height_uncorrected_goal_point,
            ) = random_pixel_goal(habitat_config, env, args.mask_shape)
            if not goal_flag:
                print(f"Rejected the current goal with goal-flag {goal_flag}")
                continue

            best_action = follower.get_next_action(goal_point)

            if best_action == 0:
                print(
                    f"Rejected the current goal with goal-flag {goal_flag} and best-action {best_action}"
                )
                continue

            start_rgb_image = obs["rgb"]
            start_semantic_image = np.squeeze(obs["semantic"])
            print(np.unique(start_semantic_image))
            start_depth_image = obs["depth"]
            start_pose = np.concatenate(
                [
                    np.array(env.sim.get_agent_state().position),
                    np.array(quaternion_to_list(env.sim.get_agent_state().rotation)),
                ]
            )

            last_best_action = None

            while True:
                assert best_action is not None and last_best_action != 0  # sanity check

                action_data.append(best_action)
                obs = env.step(best_action)

                rgb_data.append(obs["rgb"])
                depth_data.append(obs["depth"])

                pose = np.concatenate(
                    [
                        np.array(env.sim.get_agent_state().position),
                        np.array(
                            quaternion_to_list(env.sim.get_agent_state().rotation)
                        ),
                    ]
                )

                semantic_image = np.squeeze(obs["semantic"])
                print(np.unique(semantic_image))

                pose_data.append(pose)
                normed_target_point_data.append(
                    get_normalized_goal_point_location_in_current_obs(
                        habitat_config, env, height_uncorrected_goal_point
                    )
                )

                # gen_observations = env.sim.get_observations_at(
                #     position=pose[:3],
                #     rotation=quaternion_from_coeff(pose[3:]),
                # )
                # print(
                #     "Images are equal",
                #     np.array_equal(obs["rgb"], gen_observations["rgb"]),
                # )

                timesteps += 1

                if not (env.episode_over or timesteps >= args.max_timesteps):
                    last_best_action = best_action
                    best_action = follower.get_next_action(goal_point)
                else:
                    print(f"Goal reached in {timesteps} steps")
                    if timesteps < args.min_timesteps:
                        print(
                            f"{timesteps} less than min. timesteps of {args.min_timesteps}"
                        )
                        break

                    episode_group = hdf.create_group(f"episode_{episode_counter}")

                    episode_group.create_dataset(
                        "start_rgb_image", data=start_rgb_image
                    )
                    # episode_group.create_dataset("start_depth_image", data=start_depth_image)
                    episode_group.create_dataset("goal_mask", data=goal_mask)
                    episode_group.create_dataset("start_pose", data=start_pose)
                    episode_group.create_dataset("poses", data=np.array(pose_data))
                    episode_group.create_dataset("actions", data=np.array(action_data))
                    episode_group.create_dataset(
                        "normalized_target_points",
                        data=np.array(normed_target_point_data),
                    )
                    episode_group.create_dataset("rgb_images", data=np.array(rgb_data))
                    episode_group.create_dataset(
                        "height_uncorrected_goal_point",
                        data=np.array(height_uncorrected_goal_point),
                    )
                    episode_group.create_dataset(
                        "goal_point",
                        data=np.array(goal_point),
                    )
                    # episode_group.create_dataset("depth_images", data=np.array(depth_data))

                    episode_counter += 1
                    end_time = time.time()
                    time_taken = end_time - start_time
                    total_time_taken = end_time - time_before_loop
                    total_hours, rem = divmod(total_time_taken, 3600)
                    total_minutes, total_seconds = divmod(rem, 60)

                    print(
                        f"Done with episode {episode_counter} out of {args.num_saved_episodes} total"
                    )
                    print(f"Time taken for this episode: {time_taken:.2f} seconds")
                    print(
                        f"Total time taken: {int(total_hours)} hours, {int(total_minutes)} minutes, {int(total_seconds)} seconds"
                    )
                    print()
                    break

    print(f"All episodes saved to {hdf5_file_path}")
    env.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Habitat Data Collection Script")
    parser.add_argument(
        "--stage", type=str, default="train", help="Stage (train/val/minival)"
    )
    parser.add_argument(
        "--split", type=str, default="train", help="Split (train/val/valmini)"
    )
    parser.add_argument(
        "--num_sampled_episodes",
        "-nse",
        type=int,
        default=int(1e4),
        help="Number of sampled episodes",
    )
    parser.add_argument(
        "--max_timesteps", type=int, default=64, help="Maximum timesteps per episode"
    )
    parser.add_argument(
        "--min_timesteps", type=int, default=5, help="Minimum timesteps per episode"
    )
    parser.add_argument(
        "--mask_shape", type=int, default=3, help="Shape of the goal mask"
    )
    parser.add_argument(
        "--config_path",
        type=str,
        default="hm3d_config_instance_image_nav_mod.yaml",
        help="Path to Habitat config file",
    )
    parser.add_argument("--robot_height", type=float, default=0.88, help="Robot height")
    parser.add_argument("--robot_radius", type=float, default=0.25, help="Robot radius")
    parser.add_argument(
        "--sensor_height", type=float, default=0.88, help="Sensor height"
    )
    parser.add_argument(
        "--image_width", type=int, default=224, help="Image width"
    )  # don't change
    parser.add_argument("--image_height", type=int, default=224, help="Image height")
    parser.add_argument(
        "--image_hfov", type=float, default=79, help="Image horizontal field of view"
    )
    parser.add_argument("--step_size", type=float, default=0.25, help="Step size")
    parser.add_argument(
        "--turn_angle", type=float, default=30, help="Turn angle in degrees"
    )

    parser.add_argument(
        "--data_dir",
        type=str,
        default="/scratch/vineeth.bhat/sg_habitat/data/datasets/instance_imagenav/hm3d/v3",
        help="Path to data directory",
    )
    parser.add_argument(
        "--scene_dataset_dir",
        type=str,
        default="/scratch/vineeth.bhat/sg_habitat/data/scene_datasets/hm3d",
        help="Path to scene dataset directory",
    )
    parser.add_argument(
        "--scenes_dir",
        type=str,
        default="/scratch/vineeth.bhat/sg_habitat/data/scene_datasets",
        help="Path to scenes directory",
    )
    parser.add_argument(
        "--save_path",
        "-s",
        type=str,
        default="/scratch/vineeth.bhat/pix_nav_point_based_data/training_100.h5",
        help="Path to save data",
    )
    parser.add_argument(
        "--num_saved_episodes",
        "-n",
        type=int,
        default=int(1),
        help="Number of saved episodes",
    )

    args = parser.parse_args()
    main(args)

The code used to create the config object:

def create_habitat_config(config_path, args):

    habitat_config = habitat.get_config(config_path)

    data_path = f"{args.data_dir}/{args.stage}/{args.stage}.json.gz"
    scene_dataset = (
        f"{args.scene_dataset_dir}/hm3d_annotated_basis.scene_dataset_config.json"
    )
    print(f"Using data path: {data_path}")
    print(f"Using scene dataset: {scene_dataset}")

    if not os.path.exists(data_path):
        raise RuntimeError(f"Data path path does not exist: {data_path}")
    if not os.path.exists(scene_dataset):
        raise RuntimeError(f"Scene dataset path does not exist: {scene_dataset}")

    with read_write(habitat_config):
        habitat_config.habitat.dataset.split = args.split
        habitat_config.habitat.dataset.scenes_dir = args.scenes_dir
        habitat_config.habitat.dataset.data_path = data_path
        habitat_config.habitat.simulator.scene_dataset = scene_dataset
        habitat_config.habitat.environment.iterator_options.num_episode_sample = (
            args.num_sampled_episodes
        )
        habitat_config.habitat.simulator.agents.main_agent.height = args.robot_height
        habitat_config.habitat.simulator.agents.main_agent.radius = args.robot_radius
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.rgb_sensor.height = (
            args.image_height
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.rgb_sensor.width = (
            args.image_width
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.rgb_sensor.hfov = (
            args.image_hfov
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.rgb_sensor.position = [
            0,
            args.sensor_height,
            0,
        ]
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.height = (
            args.image_height
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.width = (
            args.image_width
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.hfov = (
            args.image_hfov
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.position = [
            0,
            args.sensor_height,
            0,
        ]
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.max_depth = (
            500.0
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.min_depth = (
            0.0
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.depth_sensor.normalize_depth = (
            False
        )
        habitat_config.habitat.simulator.forward_step_size = args.step_size
        habitat_config.habitat.simulator.turn_angle = args.turn_angle
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.semantic_sensor.height = (
            args.image_height
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.semantic_sensor.width = (
            args.image_width
        )
        habitat_config.habitat.simulator.agents.main_agent.sim_sensors.semantic_sensor.position = [
            0,
            args.sensor_height,
            0,
        ]
    return habitat_config

The YAML file:

defaults:
  - /habitat: habitat_config_base
  - /habitat/task: instance_imagenav
  - /habitat/simulator/sensor_setups@habitat.simulator.agents.main_agent: rgbd_agent
  - /habitat/dataset/instance_imagenav: hm3d_v2
  - _self_

habitat:
  environment:
    max_episode_steps: 100
  simulator:
    turn_angle: 15
    agents:
      main_agent:
        sim_sensors:
          rgb_sensor:
            width: 360
            height: 640
            hfov: 42
            position: [0, 1.31, 0]
          depth_sensor:
            width: 360
            height: 640
            hfov: 58
            min_depth: 0.05
            max_depth: 50.0
            position: [0, 1.31, 0]
          semantic_sensor:
            type: HabitatSimSemanticSensor
            width: 360
            height: 640
            position: [0, 1.31, 0]
        height: 1.41
        radius: 0.17
    habitat_sim_v0:
      gpu_device_id: 0
      allow_sliding: False

@zhouak47
Copy link

I also meet the same problem home/zhoulei/dataset_total/habitat/scenes/hm3d_v0.2/val/00829-QaLdnwvtxbs/QaLdnwvtxbs.basis.scn exists but failed to load . Have you solved this?
image

@FlightVin
Copy link
Author

@zhouak47 Sorry, I haven't found a solution yet.

@zhouak47
Copy link

zhouak47 commented Oct 22, 2024

@FlightVin I have found a solution . You can comment these codes out in .../habitat-lab/habitat-lab/habitat/core/env.py ,check your path of habitat.simulator.scene_dataset and try again:
problem2
If it does not work . Try to use habitat==0.2.5 instead of 0.3.Hope this will help you. Best wishes.

@FlightVin
Copy link
Author

@zhouak47 That worked. Thank you so much!

@aclegg3 aclegg3 added bug Something isn't working solution proposed A tested solution to the issue has been proposed in the comment thread. labels Oct 29, 2024
@aclegg3
Copy link
Contributor

aclegg3 commented Oct 29, 2024

Interesting, thanks for the report on this issue, folks. Logging it as a bug for someone to look into.

@ByZ0e
Copy link

ByZ0e commented Nov 8, 2024

Habitat-Lab and Habitat-Sim versions

Habitat-Lab: master

Habitat-Sim: master

Master branch contains 'bleeding edge' code and should be used at your own risk.

Docs and Tutorials

Did you read the docs? https://aihabitat.org/docs/habitat-lab/ -> Yes

Did you check out the tutorials? https://aihabitat.org/tutorial/2020/ -> Yes

Perhaps your question is answered there. If not, carry on!

Semantics aren't loading correctly

For the sake of brevity, consider the following image showing the data present in the minival set of HM3D: Pasted image 20241016200316 1

The relevant files that have been listed in README for semantics are present.

However, when I try to access the unique semantic labels here (permalink), I always get either 0 or 3. This is despite me setting the scene dataset correctly here.

I get the following warnings on InstanceImageNav-v1

[20:32:03:831051]:[Warning]:[Metadata] SceneDatasetAttributes.cpp(107)::addNewSceneInstanceToDataset 
: Dataset : 'hm3d_annotated_basis' : Lighting Layout Attributes 'no_lights' specified in Scene Attrib
utes but does not exist in dataset, so creating default.                                             
[20:32:03:831186]:[Warning]:[Scene] SemanticScene.h(328)::checkFileExists : ::loadSemanticSceneDescri
ptor: File/scratch/vineeth.bhat/sg_habitat/data/scene_datasets/hm3d_v0.2/minival/00802-wcojb4TFT35/wc
ojb4TFT35.basis.scndoes not exist.  Aborting load.                                                   
[20:32:03:831202]:[Warning]:[Scene] SemanticScene.cpp(121)::loadSemanticSceneDescriptor : SSD File Na
ming Issue! Neither SemanticAttributes-provided name : `/scratch/vineeth.bhat/sg_habitat/data/scene_d
atasets/hm3d_v0.2/minival/00802-wcojb4TFT35/wcojb4TFT35.basis.scn` nor constructed filename : `/scrat
ch/vineeth.bhat/sg_habitat/data/scene_datasets/hm3d_v0.2/minival/00802-wcojb4TFT35/info_semantic.json
` exist on disk.                                                                                     
[20:32:03:831210]:[Error]:[Scene] SemanticScene.cpp(137)::loadSemanticSceneDescriptor : SSD Load Fail
ure! File with SemanticAttributes-provided name `/scratch/vineeth.bhat/sg_habitat/data/scene_datasets
/hm3d_v0.2/minival/00802-wcojb4TFT35/wcojb4TFT35.basis.scn` exists but failed to load.               
[20:32:04:928962]:[Warning]:[Sim] Simulator.cpp(594)::instanceStageForSceneAttributes : The active sc
ene does not contain semantic annotations : activeSemanticSceneID_ = 0                               
2024-10-16 20:32:05,059 Initializing task InstanceImageNav-v1                                        

Any help would be appreciated. Thanks!

sorry, i meet the same problem here. I use the habitat==0.2.5. And i have tried the solution in #2090 (comment). But it did not work for me.

I got the error like this:
ESP_CHECK failed: No Stage Attributes exists for requested scene 'data/scene_datasets/hm3d_v0.2/minival/00802-wcojb4TFT35/wcojb4TFT35.basis.glb' in currently specified Scene Dataset ./data/scene_datasets/hm3d_v0.2/hm3d_annotated_basis.scene_dataset_config.json. Likely the Scene Dataset Configuration requested was not found and so a new, empty Scene Dataset was created. Verify the Scene Dataset Configuration file name used.

Any suggestions, please.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working solution proposed A tested solution to the issue has been proposed in the comment thread.
Projects
None yet
Development

No branches or pull requests

4 participants