-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconure_tp_t1.py
194 lines (173 loc) · 8.91 KB
/
conure_tp_t1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import tensorflow as tf
import data_loader_t1 as data_loader
import generator_prune_t1 as generator_recsys
import math
import numpy as np
import argparse
import config
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
parser.add_argument('--datapath', type=str, default='Data/Session/original_desen_pretrain.csv',
help='data path')
parser.add_argument('--datapath_index', type=str, default='Data/Session/index.csv',
help='data path')
parser.add_argument('--eval_iter', type=int, default=20000,
help='Sample generator output evry x steps')
parser.add_argument('--save_para_every', type=int, default=20000,
help='save model parameters every')
parser.add_argument('--tt_percentage', type=float, default=0.2,
help='0.2 means 80% training 20% testing')
parser.add_argument('--has_positionalembedding', type=bool, default=False,
help='whether contains positional embedding before performing cnnn')
parser.add_argument('--max_position', type=int, default=1000,
help='maximum number of for positional embedding, it has to be larger than the sequence lens')
args = parser.parse_args()
dl = data_loader.Data_Loader({'model_type': 'generator', 'dir_name': args.datapath,'dir_name_index': args.datapath_index})
all_samples = dl.item
items = dl.item_dict
bigemb= dl.embed_len
print "len(source)",len(items)
print "len(allitems)", bigemb
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(all_samples)))
all_samples = all_samples[shuffle_indices]
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
model_para = {
'item_size': len(items),
'bigemb':bigemb,
'dilated_channels': 256,
'dilations': [1,4,1,4,1,4,1,4,],
'kernel_size': 3,
'learning_rate':0.001,
'batch_size':32,
'iterations':4,
'has_positionalembedding': args.has_positionalembedding,
'max_position': args.max_position,
'is_negsample':True,
'taskID': config.taskID_1st #this is the start taskID index from 10001 i.e., ID=1
}
taskID=model_para['taskID']
itemrec = generator_recsys.NextItNet_Decoder(model_para)
itemrec.train_graph(model_para['is_negsample'], ispre=True)
optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1).minimize(itemrec.loss)
itemrec.save_impwei(reuse=True) # save important weight
itemrec.predict_graph(model_para['is_negsample'],reuse=True, ispre=True)
tf.add_to_collection("dilate_input", itemrec.dilate_input)
tf.add_to_collection("context_embedding", itemrec.context_embedding)
sess = tf.Session()
init=tf.global_variables_initializer()
sess.run(init)
numIters = 1
for iter in range(model_para['iterations']):
batch_no = 0
batch_size = model_para['batch_size']
while (batch_no + 1) * batch_size < train_set.shape[0]:
item_batch = train_set[batch_no * batch_size: (batch_no + 1) * batch_size, :]
_, loss = sess.run(
[optimizer, itemrec.loss],
feed_dict={
itemrec.itemseq_input: item_batch
})
if numIters % args.eval_iter == 0:
print "-------------------------------------------------------train1"
print "LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss, iter, batch_no, numIters, train_set.shape[0] / batch_size)
if numIters % args.eval_iter == 0:
print "-------------------------------------------------------test1"
if (batch_no + 1) * batch_size < valid_set.shape[0]:
item_batch = valid_set[(batch_no) * batch_size: (batch_no + 1) * batch_size, :]
loss = sess.run(
[itemrec.loss_test],
feed_dict={
itemrec.input_predict: item_batch
})
print "LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss, iter, batch_no, numIters, valid_set.shape[0] / batch_size)
batch_no += 1
if numIters % args.eval_iter == 0:
batch_no_test = 0
batch_size_test = batch_size
curr_preds_5=[]
rec_preds_5=[]
ndcg_preds_5=[]
while (batch_no_test + 1) * batch_size_test < valid_set.shape[0]:
if (numIters / (args.eval_iter) < 5):
if (batch_no_test > 5000):
break
else:
if (batch_no_test > 9000):
break
item_batch = valid_set[batch_no_test * batch_size_test: (batch_no_test + 1) * batch_size_test, :]
[top_k_batch] = sess.run(
[itemrec.top_k],
feed_dict={
itemrec.input_predict: item_batch,
})
top_k=np.squeeze(top_k_batch[1])
for bi in range(top_k.shape[0]):
pred_items_5 = top_k[bi][:5]
true_item=item_batch[bi][-1]
predictmap_5={ch : i for i, ch in enumerate(pred_items_5)}
rank_5=predictmap_5.get(true_item)
# rank_20 = pred_items_20.get(true_item)
if rank_5 ==None:
curr_preds_5.append(0.0)
rec_preds_5.append(0.0)#2
ndcg_preds_5.append(0.0)#2
else:
MRR_5 = 1.0/(rank_5+1)
Rec_5=1.0#3
ndcg_5 = 1.0 / math.log(rank_5 + 2, 2) # 3
curr_preds_5.append(MRR_5)
rec_preds_5.append(Rec_5)#4
ndcg_preds_5.append(ndcg_5) # 4
batch_no_test += 1
if (numIters / (args.eval_iter) < 5):
if (batch_no_test == 5000):
print "mrr_5:", sum(curr_preds_5) / float(len(curr_preds_5)), "hit_5:", sum(rec_preds_5) / float(
len(rec_preds_5)), "ndcg_5:", sum(ndcg_preds_5) / float(
len(ndcg_preds_5))
else:
if (batch_no_test == 9000):
print "mrr_5:", sum(curr_preds_5) / float(len(curr_preds_5)), "hit_5:", sum(rec_preds_5) / float(
len(rec_preds_5)), "ndcg_5:", sum(ndcg_preds_5) / float(
len(ndcg_preds_5))
numIters += 1
#after training
_mask_val_list = sess.run(itemrec.mask_val_list)
for layer_id, dilation in enumerate(model_para['dilations']):
resblock_type = "decoder"
resblock_name = "nextitnet_residual_block{}_layer_{}_{}".format(resblock_type, layer_id, dilation)
with tf.variable_scope(resblock_name, reuse=tf.AUTO_REUSE):
with tf.variable_scope("dilated_conv1"):
name_conv1 = "mask_filter/{}_mask_val".format(taskID)
init_conv1 = tf.constant(_mask_val_list[2 * layer_id])
mask_val_conv1 = tf.get_variable(name_conv1,
initializer=init_conv1, trainable=False) # there is no optimizer
with tf.variable_scope("dilated_conv2"):
name_conv2 = "mask_filter/{}_mask_val".format(taskID)
init_conv2 = tf.constant(_mask_val_list[2 * layer_id + 1])
mask_val_conv2 = tf.get_variable(name_conv2,
initializer=init_conv2, trainable=False)
unitialized_vars = []
for var in tf.global_variables():
try:
sess.run(var)
except tf.errors.FailedPreconditionError:
unitialized_vars.append(var)
initialize_op = tf.variables_initializer(unitialized_vars)
sess.run(initialize_op)
saver = tf.train.Saver()
save_path = saver.save(sess,
"Data/Models/generation_model_t1/model_nextitnet_transfer_pretrain.ckpt".format(iter,
numIters))
print "Save models done!"
if __name__ == '__main__':
main()