-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattackers.py
54 lines (38 loc) · 1.71 KB
/
attackers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn.functional as F
"""
The PGD attack function in this file is used for adversarial training.
During adversarial training of OMP model, at each iteration of PGD attack,
we RANDOMLY select a path to perform attack.
"""
# -------- PGD attack --------
def pgd_attack(net, image, label, eps, alpha=0.01, iters=7, random_start=True, d_min=0, d_max=1):
perturbed_image = image.clone()
perturbed_image.requires_grad = True
image_max = image + eps
image_min = image - eps
image_max.clamp_(d_min, d_max)
image_min.clamp_(d_min, d_max)
# initialize average batch data gradient sign sum
avg_batch_grad_sign_sum = 0
if random_start:
with torch.no_grad():
perturbed_image.data = image + perturbed_image.uniform_(-1*eps, eps)
perturbed_image.data.clamp_(d_min, d_max)
for idx in range(iters):
net.zero_grad()
_, logits = net(perturbed_image, 'random')
loss = F.cross_entropy(logits, label)
if perturbed_image.grad is not None:
perturbed_image.grad.data.zero_()
loss.backward()
data_grad = perturbed_image.grad.data
# collect batch grad sign sum in each iteration
avg_batch_grad_sign_sum = avg_batch_grad_sign_sum + torch.sum(torch.abs(torch.sign(data_grad)))
with torch.no_grad():
perturbed_image.data += alpha * torch.sign(data_grad)
perturbed_image.data = torch.max(torch.min(perturbed_image, image_max), image_min)
perturbed_image.requires_grad = False
# compute average batch grad sign sum
avg_batch_grad_sign_sum = avg_batch_grad_sign_sum / iters
return perturbed_image, avg_batch_grad_sign_sum