-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ablation.py
261 lines (203 loc) · 10 KB
/
train_ablation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Created on Mon Feb 24 2020
@author: fanghenshao
"""
from __future__ import print_function
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
from torchvision import datasets, transforms
import os
import ast
import copy
import time
import random
import argparse
import numpy as np
from utils import setup_seed
from fast_attackers import pgd_attack
# ======== fix data type ========
torch.set_default_tensor_type(torch.FloatTensor)
# ======== fix seed =============
setup_seed(666)
# ======== options ==============
parser = argparse.ArgumentParser(description='Training Deep Neural Networks (ABLATION STUDY)')
# -------- file param. --------------
parser.add_argument('--data_dir',type=str,default='/media/Disk1/KunFang/data/CIFAR10/',help='file path for data')
parser.add_argument('--model_dir',type=str,default='save/',help='file path for saving model')
parser.add_argument('--dataset',type=str,default='CIFAR10',help='data set name')
parser.add_argument('--arch',type=str,default='OMPc',help='architecture of OMP model, alternative value include OMPa, OMPb and OMPc')
parser.add_argument('--model',type=str,default='vgg16',help='model name')
# -------- training param. ----------
parser.add_argument('--batch_size',type=int,default=512,help='batch size for training (default: 256)')
parser.add_argument('--epochs',type=int,default=200,help='number of epochs to train (default: 200)')
parser.add_argument('--gpu_id',type=str,default='0',help='gpu device index')
# -------- enable adversarial training --------
parser.add_argument('--adv_train',type=ast.literal_eval,dest='adv_train',help='enable the adversarial training')
parser.add_argument('--adv_delay',type=int,default=10,help='epochs delay for adversarial training')
# -------- hyper parameters -------
parser.add_argument('--lamb',type=float,default=0.1,help='regularization parameters')
parser.add_argument('--num_paths',type=int,default=10,help='number of orthogonal paths')
parser.add_argument('--num_classes',type=int,default=10,help='number of classes')
args = parser.parse_args()
# ======== GPU device ========
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# -------- main function
def main():
# ======== data set preprocess =============
if args.dataset == 'CIFAR10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
transform_test = transforms.Compose([
transforms.ToTensor()
])
trainset = datasets.CIFAR10(root=args.data_dir, train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(root=args.data_dir, train=False, download=True, transform=transform_test)
else:
assert False, "Unknow dataset : {}".format(args.dataset)
trainloader = data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=8, pin_memory=True)
testloader = data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=8, pin_memory=True)
train_num, test_num = len(trainset), len(testset)
print('-------- DATA INFOMATION --------')
print('---- dataset: '+args.dataset)
print('---- #train : %d'%train_num)
print('---- #test : %d'%test_num)
# ======== initialize net
from model.OMP_c_resnet_v1_ablation import resnet20
net = resnet20(args.num_classes, args.num_paths).cuda()
args.model_path = args.model_dir+args.dataset+'-'+args.arch+'-'+args.model+'-lamb-'+str(args.lamb)+'-path-'+str(args.num_paths)+'-ablation-adv.pth'
print('-------- MODEL INFORMATION --------')
print("---- arch : "+args.arch)
print('---- model: '+args.model)
print('---- adv. train: '+str(args.adv_train))
print('---- saved path: '+args.model_path)
# ======== set criterions & optimizers
criterion = nn.CrossEntropyLoss()
args.epochs = 350
# do NOT update the parameters in the paths
# do NOT update the parameters in the paths
optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=0.1, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,milestones=[150,250],gamma=0.1)
print('-------- START TRAINING --------')
for epoch in range(args.epochs):
start = time.time()
# -------- train
loss_tr, loss_ortho = train_epoch(net, trainloader, testloader, optimizer, criterion, epoch)
# -------- validation
if epoch % 20 == 0 or epoch == (args.epochs-1):
corr_tr, corr_te = val(net, trainloader, testloader)
scheduler.step()
duration = time.time() - start
# -------- save model
if epoch % 20 == 0 or epoch == (args.epochs-1):
checkpoint = {'state_dict': net.state_dict()}
torch.save(checkpoint, args.model_path)
if args.adv_train:
print('Epoch %d/%d costs %fs:' % (epoch, args.epochs, duration))
print(' train loss on each path: ')
print(' ', loss_tr['clean'])
print(' train adv. loss on each path: ')
print(' ', loss_tr['adv'])
print(' orthogonal loss = %f/%f'%(loss_ortho['clean'], loss_ortho['adv']))
else:
print('Epoch %d/%d costs %fs:' % (epoch, args.epochs, duration))
print(' train loss on each classifier: ')
print(' ', loss_tr['clean'])
print(' orthogonal loss = %f'%loss_ortho['clean'])
if epoch % 20 == 0 or epoch == (args.epochs-1):
print(' train acc. on each path: ')
print(' ', corr_tr/train_num)
print(' test acc. on each path: ')
print(' ', corr_te/test_num)
# ======== train model ========
def train_epoch(net, trainloader, testloader, optim, criterion, epoch):
net.train()
loss_tr, loss_ortho = {}, {}
avg_loss_tr, avg_loss_tr_adv = np.zeros(args.num_paths), np.zeros(args.num_paths)
avg_loss_ortho_clean, avg_loss_ortho_adv = 0.0, 0.0
for batch_idx, (b_data, b_label) in enumerate(trainloader):
# -------- move to gpu
b_data, b_label = b_data.cuda(), b_label.cuda()
# ------- forward anc compute loss
total_loss = 0
_, all_logits = net(b_data, 'all')
for idx in range(args.num_paths):
logits = all_logits[idx]
loss = criterion(logits, b_label)
avg_loss_tr[idx] = avg_loss_tr[idx] + loss.item() # save the loss value
total_loss = total_loss + 1/args.num_paths * loss # sum the weighted loss for backward propagation
# ------- compute the orthogonal constraint
if args.num_paths > 1:
loss_ortho_clean = net._orthogonal_costr()
avg_loss_ortho_clean = avg_loss_ortho_clean + loss_ortho_clean.item()
else:
loss_ortho_clean = 0
total_loss = total_loss + args.lamb*loss_ortho_clean
if batch_idx == (len(trainloader)-1):
avg_loss_tr = avg_loss_tr / len(trainloader)
avg_loss_ortho_clean = avg_loss_ortho_clean / len(trainloader)
# -------- backprop. & update
optim.zero_grad()
total_loss.backward()
optim.step()
# -------- training with adversarial examples
if args.adv_train and epoch > args.adv_delay:
net.eval()
perturbed_data, _ = pgd_attack(net, b_data, b_label, eps=0.013, alpha=0.01, iters=7)
net.train()
total_loss = 0
_, all_logits = net(perturbed_data, 'all')
for idx in range(args.paths):
logits = all_logits[idx]
loss_adv = criterion(logits, b_label)
avg_loss_tr_adv[idx] = avg_loss_tr_adv[idx] + loss_adv.item() # save the loss value
total_loss = total_loss + 1/args.num_paths * loss_adv # sum the weighted loss for backward propagation
# ------- compute the orthogonal constraint
if args.num_paths > 1:
loss_ortho_adv = net._orthogonal_costr()
avg_loss_ortho_adv = avg_loss_ortho_adv + loss_ortho_adv.item()
else:
loss_ortho_adv = 0
total_loss = total_loss + args.lamb*loss_ortho_adv
if batch_idx == (len(trainloader)-1):
avg_loss_tr_adv = avg_loss_tr_adv / len(trainloader)
avg_loss_ortho_adv = avg_loss_ortho_adv / len(trainloader)
optim.zero_grad()
total_loss.backward()
optim.step()
loss_tr['clean'], loss_tr['adv'] = avg_loss_tr, avg_loss_tr_adv
loss_ortho['clean'], loss_ortho['adv'] = avg_loss_ortho_clean, avg_loss_ortho_adv
return loss_tr, loss_ortho
# ======== evaluate model ========
def val(net, trainloader, testloader):
net.eval()
correct_train, correct_test = np.zeros(args.num_paths), np.zeros(args.num_paths)
with torch.no_grad():
# -------- compute the accs. of train, test set
for test in testloader:
images, labels = test
images, labels = images.cuda(), labels.cuda()
# ------- forward
_, all_logits = net(images, 'all')
for idx in range(args.num_paths):
logits = all_logits[idx]
logits = logits.detach()
_, pred = torch.max(logits.data, 1)
correct_test[idx] += (pred == labels).sum().item()
for train in trainloader:
images, labels = train
images, labels = images.cuda(), labels.cuda()
_, all_logits = net(images, 'all')
for idx in range(args.num_paths):
logits = all_logits[idx]
logits = logits.detach()
_, pred = torch.max(logits.data, 1)
correct_train[idx] += (pred == labels).sum().item()
return correct_train, correct_test
# ======== startpoint
if __name__ == '__main__':
main()