forked from luckycallor/InsightFace-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
127 lines (110 loc) · 5.66 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import io
import os
import yaml
import pickle
import argparse
import numpy as np
import tensorflow as tf
from scipy import misc
from model import get_embd
from eval.utils import calculate_roc, calculate_tar
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='build', help='model mode: build')
parser.add_argument('--config_path', type=str, default='./configs/config_ms1m_100.yaml', help='config path, used when mode is build')
parser.add_argument('--model_path', type=str, default='/data/hhd/InsightFace-tensorflow/output/20190116-130753/checkpoints/ckpt-m-116000', help='model path')
parser.add_argument('--val_data', type=str, default='', help='val data, a dict with key as data name, value as data path')
parser.add_argument('--train_mode', type=int, default=0, help='whether set train phase to True when getting embds. zero means False, one means True')
parser.add_argument('--target_far', type=float, default=1e-3, help='target far when calculate tar')
return parser.parse_args()
def load_bin(path, image_size):
print('reading %s' % path)
bins, issame_list = pickle.load(open(path, 'rb'), encoding='bytes')
num = len(bins)
images = np.zeros(shape=[num, image_size, image_size, 3], dtype=np.float32)
images_f = np.zeros(shape=[num, image_size, image_size, 3], dtype=np.float32)
# m = config['augment_margin']
# s = int(m/2)
cnt = 0
for bin in bins:
img = misc.imread(io.BytesIO(bin))
img = misc.imresize(img, [image_size, image_size])
# img = img[s:s+image_size, s:s+image_size, :]
img_f = np.fliplr(img)
img = img/127.5-1.0
img_f = img_f/127.5-1.0
images[cnt] = img
images_f[cnt] = img_f
cnt += 1
print('done!')
return (images, images_f, issame_list)
def evaluate(embeddings, actual_issame, far_target=1e-3, distance_metric=0, nrof_folds=10):
thresholds = np.arange(0, 4, 0.01)
if distance_metric == 1:
thresholdes = np.arange(0, 1, 0.0025)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), distance_metric=distance_metric, nrof_folds=nrof_folds)
tar, tar_std, far = calculate_tar(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), far_target=far_target, distance_metric=distance_metric, nrof_folds=nrof_folds)
acc_mean = np.mean(accuracy)
acc_std = np.std(accuracy)
return tpr, fpr, acc_mean, acc_std, tar, tar_std, far
def run_embds(sess, images, batch_size, image_size, train_mode, embds_ph, image_ph, train_ph_dropout, train_ph_bn):
if train_mode >= 1:
train = True
else:
train = False
batch_num = len(images)//batch_size
left = len(images)%batch_size
embds = []
for i in range(batch_num):
image_batch = images[i*batch_size: (i+1)*batch_size]
cur_embd = sess.run(embds_ph, feed_dict={image_ph: image_batch, train_ph_dropout: train, train_ph_bn: train})
embds += list(cur_embd)
print('%d/%d' % (i, batch_num), end='\r')
if left > 0:
image_batch = np.zeros([batch_size, image_size, image_size, 3])
image_batch[:left, :, :, :] = images[-left:]
cur_embd = sess.run(embds_ph, feed_dict={image_ph: image_batch, train_ph_dropout: train, train_ph_bn: train})
embds += list(cur_embd)[:left]
print()
print('done!')
return np.array(embds)
if __name__ == '__main__':
args = get_args()
if args.mode == 'build':
print('building...')
config = yaml.load(open(args.config_path))
images = tf.placeholder(dtype=tf.float32, shape=[None, config['image_size'], config['image_size'], 3], name='input_image')
train_phase_dropout = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase')
train_phase_bn = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase_last')
embds, _ = get_embd(images, train_phase_dropout, train_phase_bn, config)
print('done!')
tf_config = tf.ConfigProto(allow_soft_placement=True)
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
tf.global_variables_initializer().run()
print('loading...')
saver = tf.train.Saver()
saver.restore(sess, args.model_path)
print('done!')
batch_size = config['batch_size']
# batch_size = 32
print('evaluating...')
val_data = {}
if args.val_data == '':
val_data = config['val_data']
else:
val_data[os.path.basename(args.val_data)] = args.val_data
for k, v in val_data.items():
imgs, imgs_f, issame = load_bin(v, config['image_size'])
print('forward running...')
embds_arr = run_embds(sess, imgs, batch_size, config['image_size'], args.train_mode, embds, images, train_phase_dropout, train_phase_bn)
embds_f_arr = run_embds(sess, imgs_f, batch_size, config['image_size'], args.train_mode, embds, images, train_phase_dropout, train_phase_bn)
embds_arr = embds_arr/np.linalg.norm(embds_arr, axis=1, keepdims=True)+embds_f_arr/np.linalg.norm(embds_f_arr, axis=1, keepdims=True)
print('done!')
tpr, fpr, acc_mean, acc_std, tar, tar_std, far = evaluate(embds_arr, issame, far_target=args.target_far, distance_metric=0)
print('eval on %s: acc--%1.5f+-%1.5f, tar--%1.5f+-%1.5f@far=%1.5f' % (k, acc_mean, acc_std, tar, tar_std, far))
print('done!')
else:
raise ValueError("Invalid value for --mode.")