forked from luckycallor/InsightFace-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_embd.py
118 lines (101 loc) · 5.12 KB
/
get_embd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import io
import os
import yaml
import pickle
import argparse
import numpy as np
import tensorflow as tf
from scipy import misc
from model import get_embd
from eval.utils import calculate_roc, calculate_tar
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='build', help='model mode: build')
parser.add_argument('--config_path', type=str, default='./configs/config_ms1m_100.yaml', help='config path, used when mode is build')
parser.add_argument('--model_path', type=str, default='/data/hhd/InsightFace-tensorflow/output/20190116-130753/checkpoints/ckpt-m-116000', help='model path')
parser.add_argument('--read_path', type=str, default='', help='path to image file or directory to images')
parser.add_argument('--save_path', type=str, default='embds.pkl', help='path to save embds')
parser.add_argument('--train_mode', type=int, default=0, help='whether set train phase to True when getting embds. zero means False, one means True')
return parser.parse_args()
def load_image(path, image_size):
print('reading %s' % path)
if os.path.isdir(path):
paths = list(os.listdir(path))
else:
paths = [path]
images = []
images_f = []
for path in paths:
img = misc.imread(path)
img = misc.imresize(img, [image_size, image_size])
# img = img[s:s+image_size, s:s+image_size, :]
img_f = np.fliplr(img)
img = img/127.5-1.0
img_f = img_f/127.5-1.0
images.append(img)
images_f.append(img_f)
fns = [os.path.basename(p) for p in paths]
print('done!')
return (np.array(images), np.array(images_f), fns)
def evaluate(embeddings, actual_issame, far_target=1e-3, distance_metric=0, nrof_folds=10):
thresholds = np.arange(0, 4, 0.01)
if distance_metric == 1:
thresholdes = np.arange(0, 1, 0.0025)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), distance_metric=distance_metric, nrof_folds=nrof_folds)
tar, tar_std, far = calculate_tar(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), far_target=far_target, distance_metric=distance_metric, nrof_folds=nrof_folds)
acc_mean = np.mean(accuracy)
acc_std = np.std(accuracy)
return tpr, fpr, acc_mean, acc_std, tar, tar_std, far
def run_embds(sess, images, batch_size, image_size, train_mode, embds_ph, image_ph, train_ph_dropout, train_ph_bn):
if train_mode >= 1:
train = True
else:
train = False
batch_num = len(images)//batch_size
left = len(images)%batch_size
embds = []
for i in range(batch_num):
image_batch = images[i*batch_size: (i+1)*batch_size]
cur_embd = sess.run(embds_ph, feed_dict={image_ph: image_batch, train_ph_dropout: train, train_ph_bn: train})
embds += list(cur_embd)
print('%d/%d' % (i, batch_num), end='\r')
if left > 0:
image_batch = np.zeros([batch_size, image_size, image_size, 3])
image_batch[:left, :, :, :] = images[-left:]
cur_embd = sess.run(embds_ph, feed_dict={image_ph: image_batch, train_ph_dropout: train, train_ph_bn: train})
embds += list(cur_embd)[:left]
print()
print('done!')
return np.array(embds)
if __name__ == '__main__':
args = get_args()
if args.mode == 'build':
print('building...')
config = yaml.load(open(args.config_path))
images = tf.placeholder(dtype=tf.float32, shape=[None, config['image_size'], config['image_size'], 3], name='input_image')
train_phase_dropout = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase')
train_phase_bn = tf.placeholder(dtype=tf.bool, shape=None, name='train_phase_last')
embds, _ = get_embd(images, train_phase_dropout, train_phase_bn, config)
print('done!')
tf_config = tf.ConfigProto(allow_soft_placement=True)
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
tf.global_variables_initializer().run()
print('loading...')
saver = tf.train.Saver(var_list=tf.trainable_variables())
saver.restore(sess, args.model_path)
print('done!')
batch_size = config['batch_size']
imgs, imgs_f, fns = load_image(args.read_path, config['image_size'])
print('forward running...')
embds_arr = run_embds(sess, imgs, batch_size, config['image_size'], args.train_mode, embds, images, train_phase_dropout, train_phase_bn)
embds_f_arr = run_embds(sess, imgs_f, batch_size, config['image_size'], args.train_mode, embds, images, train_phase_dropout, train_phase_bn)
embds_arr = embds_arr/np.linalg.norm(embds_arr, axis=1, keepdims=True)+embds_f_arr/np.linalg.norm(embds_f_arr, axis=1, keepdims=True)
embds_arr = embds_arr/np.linalg.norm(embds_arr, axis=1, keepdims=True)
print('done!')
print('saving...')
embds_dict = dict(*zip(fns, list(embds_arr)))
pickle.dump(embds_dict, open(args.save_path, 'wb'))
print('done!')