-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_and_predicting.py
135 lines (99 loc) · 4.55 KB
/
training_and_predicting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# %%
import pandas as pd
import yaml
import numpy as np
import hpo_fpr
import os
import pickle
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from pathlib import Path
with open('../data/dataset_cfg.yaml', 'r') as infile:
data_cfg = yaml.safe_load(infile)
with open('cfg.yaml', 'r') as infile:
cfg = yaml.safe_load(infile)
cat_dict = data_cfg['categorical_dict']
def cat_checker(data, features, cat_dict):
new_data = data.copy()
for feature in features:
if new_data[feature].dtype != 'category':
new_data[feature] = pd.Categorical(new_data[feature].values, categories=cat_dict[feature])
elif new_data[feature].dtype.categories.to_list() != cat_dict[feature]:
new_data[feature] = pd.Categorical(new_data[feature].values, categories=cat_dict[feature])
return new_data
# DATA LOADING -------------------------------------------------------------------------------------
data = pd.read_csv('../../Data_and_models/data/Base.csv')
LABEL_COL = data_cfg['data_cols']['label']
TIMESTAMP_COL = data_cfg['data_cols']['timestamp']
PROTECTED_COL = data_cfg['data_cols']['protected']
CATEGORICAL_COLS = data_cfg['data_cols']['categorical']
data.sort_values(by = 'month', inplace = True)
data.reset_index(inplace=True)
data.drop(columns = 'index', inplace = True)
data.index.rename('case_id', inplace=True)
data.loc[:,data_cfg['data_cols']['categorical']] = data.loc[:,data_cfg['data_cols']['categorical']].astype('category')
data = cat_checker(data, CATEGORICAL_COLS, cat_dict)
def splitter(df, timestamp_col, beginning: int, end: int):
return df[
(df[timestamp_col] >= beginning) &
(df[timestamp_col] < end)].copy()
train = splitter(data, TIMESTAMP_COL, *cfg['splits']['train']).drop(columns=TIMESTAMP_COL)
ml_val = splitter(data, TIMESTAMP_COL, *cfg['splits']['ml_val']).drop(columns=TIMESTAMP_COL)
deployment = splitter(data, TIMESTAMP_COL, *cfg['splits']['deployment']).drop(columns=TIMESTAMP_COL)
# %%
def fpr_thresh(y_true, y_pred):
results = pd.DataFrame()
results["true"] = y_true
results["score"] = y_pred
temp = results.sort_values(by="score", ascending=False)
FPR = 0.05
N = (temp["true"] == 0).sum()
FP = round(FPR * N)
aux = temp[temp["true"] == 0]
threshold = aux.iloc[FP - 1, 1]
y_pred = np.where(results["score"] >= threshold, 1, 0)
tpr = metrics.recall_score(y_true, y_pred)
return tpr, threshold
X_train = train.drop(columns = 'fraud_bool')
y_train = train['fraud_bool']
X_val = ml_val.drop(columns = 'fraud_bool')
y_val = ml_val['fraud_bool']
if not (os.path.exists('../../Data_and_models/alert_model/best_model.pickle')):
opt = hpo_fpr.HPO(X_train,X_val,y_train,y_val, method = 'TPE', path = f"../../Data_and_models/alert_model/")
opt.initialize_optimizer(CATEGORICAL_COLS, 25)
with open('../../Data_and_models/alert_model//best_model.pickle', 'rb') as infile:
model = pickle.load(infile)
y_pred = model.predict_proba(X_val)
y_pred = y_pred[:,1]
roc_curve_clf = dict()
rec_at_5, thresh = fpr_thresh(y_val, y_pred)
X_test = deployment.drop(columns = 'fraud_bool')
y_test = deployment['fraud_bool']
y_pred = model.predict_proba(X_test)
y_pred = y_pred[:,1]
roc_curve_clf = dict()
roc_curve_clf['fpr'],roc_curve_clf['tpr'],roc_curve_clf['thr'] = metrics.roc_curve(y_test, y_pred)
pred = np.where(y_pred >= thresh, 1, 0)
tpr = metrics.recall_score(y_test, pred)
deployment['model_score'] = y_pred
deployment.to_parquet('../../Data_and_models/data/BAF_deployment_score.parquet')
model_perf_test = pd.DataFrame(index = deployment.index)
model_perf_test['model_pred'] = (deployment['model_score'] >= thresh).astype(int)
model_perf_test['label'] = deployment['fraud_bool']
tn, fp, fn, tp = confusion_matrix(model_perf_test['label'], model_perf_test['model_pred']).ravel()
fpr_dep = fp/(fp + tn)
model_perf_test_o = model_perf_test.loc[deployment['customer_age']>= 50]
model_perf_test_y = model_perf_test.loc[deployment['customer_age']< 50]
tn, fp, fn, tp = confusion_matrix(model_perf_test_o['label'], model_perf_test_o['model_pred']).ravel()
fpr_o = fp/(fp+tn)
tn, fp, fn, tp = confusion_matrix(model_perf_test_y['label'], model_perf_test_y['model_pred']).ravel()
fpr_y = fp/(fp+tn)
disparity = (fpr_o-fpr_y)
model_properties = {'fpr':0.05,
'fnr': 1 - tpr,
'threshold': thresh,
'disparity': disparity}
file_to_store = open("../../Data_and_models/alert_model/model_properties.pickle", "wb")
pickle.dump(model_properties, file_to_store)
file_to_store.close()